×

Comparison of atom maps. (English) Zbl 1519.92354

Summary: The computation of reliable, chemically correct atom maps from educt/product pairs has turned out to be a difficult problem in cheminformatics because the chemically correct solution is not necessarily an optimal solution for combinatorial formulations such as maximum common subgraph problems. As a consequence, competing models have been devised and compared in extensive benchmarking studies. Due to isomorphisms among products and educts it is not immediately obvious, however, when two atom maps for a given educt/product pairs are the same. We formalize here the equivalence of atom maps and show that equivalence of atom maps is in turn equivalent to the isomorphism of labeled auxiliary graphs. In particular, we demonstrate that Fujita’s imaginary transition state can be used for this purpose. Numerical experiments show that practical feasibility. Generalizations to the equivalence of subgraph matches, double pushout graph transformation rules, and mechanisms of multi-step reactions are discussed briefly.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
05C92 Chemical graph theory
92E20 Classical flows, reactions, etc. in chemistry
Full Text: DOI

References:

[1] J. L. Andersen, R. Fagerberg, C. Flamm, W. Fontana, J. Kolčak, C. V. F. P. Laurent, D. Merkle, N. Nøjgaard, Representing catalytic mechanisms with rule composition, J. Chem. Inf. Model. 62 (2022) 5513-5524.
[2] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Inferring chemi-cal reaction patterns using graph grammar rule composition, J. Syst. Chem. 4 (2013) #4.
[3] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Chemi-cal graph transformation with stereo-information, in: J. de Lara, D. Plump (Eds.), 10th International Conference on Graph Transfor-mation (ICGT 2017), Springer, Heidelberg, 2017, pp. 54-69.
[4] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Rule composi-tion in graph transformation models of chemical reactions, MATCH Commun. Math. Comput. Chem. 80 (2018) 661-704. · Zbl 1468.05289
[5] J. L. Andersen, D. Merkle, A generic framework for engineering graph canonization algorithms, ACM J. Exp. Alg. 25 (2020) #1.2. · Zbl 1521.68086
[6] L. Babai, Groups, graphs, algorithms: The graph isomorphism prob-lem, in: B. Sirakov, P. Ney de Souza, M. V. Viana (Eds.), Proceedings of the International Congress of Mathematicians (ICM 2018), World Scientific, Singapore, 2019, pp. 3303-3320.
[7] G. Benkö, C. Flamm, P. F. Stadler, A graph-based toy model of chemistry, J. Chem. Inf. Comput. Sci. 43 (2003) 1085-1093.
[8] J. Berg, M. Lässig, Local graph alignment and motif search in biolog-ical networks, Proc. Nat. Acad. Sci. USA 101 (2004) 14689-14694.
[9] J. Brecher, Graphical representation of stereochemical configuration (IUPAC Recommendations 2006), Pure Appl. Chem. 78 (2006) 1897-1970.
[10] L. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub)graph isomor-phism algorithm for matching large graphs, IEEE Trans. Patt. Anal. Machine Intell. 26 (2004) 1367-1372.
[11] E. Duesbury, J. Holliday, P. Willett, Comparison of maximum com-mon subgraph isomorphism algorithms for the alignment of 2D chem-ical structures, ChemMedChem 13 (2018) 588-598.
[12] J. Dugundji, I. Ugi, An algebraic model of constitutional chemistry as a basis for chemical computer programs, Topics Curr. Chem. 39 (1973) 19-64.
[13] H. C. Ehrlich, M. Rarey, Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review, WIREs 1 (2011) 68-79.
[14] S. Fujita, Description of organic reactions based on imaginary transi-tion structures. 1. introduction of new concepts, J. Chem. Inf. Com-put. Sci. 26 (1986) 205-212.
[15] E. D. Glendening, C. R. Landis, F. Weinhold, Resonance theory re-boot, J. Am. Chem. Soc. 141 (2019) 4156-4166.
[16] M. E. González Laffitte, N. Beier, N. Domschke, P. F. Stadler, EE-quAAM: Github repository for the evaluation of the equivalence of atom-to-atom maps, https://github.com/MarcosLaffitte/ EEquAAM, created on January 17th, 2023.
[17] A. Grinberg Dana, M. Liu, W. H. Green, Automated chemical reso-nance generation and structure filtration for kinetic modeling, Int. J. Chem. Kinetics 51 (2019) 760-776.
[18] M. Grohe, P. Schweitzer, Exploring the theoretical and practical as-pects of the graph isomorphism problem, Comm. ACM 63 (2022) 128-134.
[19] A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring network struc-ture, dynamics, and function using NetworkX, in: G. Varoquaux, T. Vaught, J. Millman (Eds.), Proceedings of the 7th Python in Sci-ence Conference, Pasadena, 2008, pp. 11-15.
[20] V. D. Hähnke, S. Kim, E. E. Bolton, PubChem chemical structure standardization, J Cheminform. 10 (2018) #36.
[21] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Vir-tanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Hal-dane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming with NumPy, Nature 585 (2020) 357-362.
[22] F. Hoonakker, N. Lachiche, A. Varnek, A. Wagner, A representation to apply usual data mining techniques to chemical reactions -illus-tration on the rate constant of SN 2 reactions in water, Int. J. Artif. Intell. Tools 20 (2011) 253-270.
[23] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput. Sci. Engin. 9 (2007) 90-95.
[24] C. Jang, L. Chen, J. D. Rabinowitz, Metabolomics and isotope trac-ing, Cell 173 (2018) 822-837.
[25] W. Jaworski, S. Szymkuć, B. Mikulak-Klucznik, K. Piecuch, T. Klucznik, M. Kaźmierowski, J. Rydzewski, G. Anna, B. A. Grzy-bowski, Automatic mapping of atoms across both simple and complex chemical reactions, Nat. Comm. 10 (2019) #1434.
[26] P. C. Kroon, Pysmiles, https://github.com/pckroon/pysmiles.
[27] M. Latendresse, M. Krummenacker, P. D. Karp, Optimal metabolic route search based on atom mappings, Bioinformatics 30 (2014) 2043-2050.
[28] A. Lin, N. Dyubankova, T. I. Madzhidov, R. I. Nugmanov, J. Ver-hoeven, T. R. Gimadiev, V. A. Afonina, Z. Ibragimova, A. Rakhim-bekova, P. Sidorov, A. Gedich, S. Rail, R. Mukhametgaleev, J. Weg-ner, H. Ceulemans, A. Varnek, Atom-to-atom mapping: A bench-marking study of popular mapping algorithms and consensus strate-gies, Mol. Inf. 41 (2021) #2100138.
[29] E. E. Litsa, M. I. Peña, M. Moll, G. Giannakopoulos, G. N. Bennett, L. E. Kavraki, Machine learning guided atom mapping of metabolic reactions, J. Chem. Inf. Model. 59 (2019) 1121-1135.
[30] E. Luks, Permutation groups and polynomial-time computation, in: L. A. Finkelstein, W. M. Kantor (Eds.), Groups and Computation, AMS, Providence, 1993, pp. 139-175. · Zbl 0813.20004
[31] E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, J. Comp. Syst. Sci. 25 (1982) 42-65. · Zbl 0493.68064
[32] M. Mann, F. Nahar, N. Schnorr, R. Backofen, P. F. Stadler, C. Flamm, Atom mapping with constraint programming, Alg. Mol. Biol. 9 (2014) #23.
[33] R. Mathon, A note on the graph isomorphism counting problem, Inf. Proc. Lett. 8 (1979) 131-136. · Zbl 0395.68057
[34] B. D. McKay, A. Piperno, Practical graph isomorphism II, J. Symb. Comp. 60 (2014) 94-112. · Zbl 1394.05079
[35] S. Müller, C. Flamm, P. F. Stadler, What makes a reaction network “chemical”? J. Cheminform. 14 (2022) #63.
[36] R. Nugmanov, N. Dyubankova, A. Gedich, J. K. Wegner, Bidi-rectional graphormer for reactivity understanding: Neural network trained to reaction atom-to-atom mapping task, J. Chem. Inf. Model. 62 (2022) 3307-3315.
[37] R. I. Nugmanov, R. N. Mukhametgaleev, T. Akhmetshin, T. R. Gimadiev, V. A. Afonina, T. I. Madzhidov, A. Varnek, CGRtools: Python library for molecule, reaction, and condensed graph of reac-tion processing, J. Chem. Inf. Model. 59 (2019) 2516-2521.
[38] M. Okamoto, A polycarbonate-made optical article and method of preparation therefor, Google Patents, 1989, eP0305214A2.
[39] N. Osório, P. Vilaça, M. Rocha, A critical evaluation of automatic atom mapping algorithms and tools, in: F. Fdez-Riverola, M. S. Mohamad, M. Rocha, J. F. De Paz, T. Pinto (Eds.), 11th Interna-tional Conference on Practical Applications of Computational Biology & Bioinformatics, Springer, Basel, 2017, pp. 257-264.
[40] A. E. Petrarca, M. F. L. Lynch, J. E. Rush, A method for generating unique computer structural representations of stereoisomers, J. Chem. Doc. 7 (1967) 154-165.
[41] G. A. Preciat Gonzalez, L. R. P. El Assal, A. Noronha, I. Thiele, H. S. Haraldsdóttir, R. M. T. Fleming, Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to recon 3D, J Cheminform. 9 (2017) #3.
[42] S. A. Rahman, M. Bashton, G. L. Holliday, R. Schrader, J. M. Thorn-ton, Small Molecule Subgraph Detector (SMSD) toolkit, J. Chemin-form. 1 (2009) #12.
[43] S. A. Rahman, S. M. Cuesta, N. Furnham, G. L. Holliday, J. M. Thornton, EC-BLAST: a tool to automatically search and compare enzyme reactions, Nature Methods 11 (2014) 171-174.
[44] S. A. Rahman, G. Torrance, L. Baldacci, S. Martínez Cuesta, F. Fen-ninger, N. Gopal, S. Choudhary, J. W. May, G. L. Holliday, C. Stein-beck, J. M. Thornton, Reaction Decoder Tool (RDT): extracting fea-tures from chemical reactions, Bioinformatics 32 (2016) 2065-2066.
[45] F. Rossello, G. Valiente, Chemical graphs, chemical reaction graphs, and chemical graph transformation, El. Notes Theor. Comp. Sci. 127 (2005) 157-166.
[46] P. Schwaller, B. Hoover, J. L. Reymond, H. Strobelt, T. Laino, Ex-traction of organic chemistry grammar from unsupervised learning of chemical reactions, Sci. Adv. 7 (2021) #eabe4166.
[47] C. Starke, A. Wegner, MetAMDB: Metabolic atom mapping database, Metabolites 12 (2022) #122.
[48] A. V. Zeigarnik, On hypercycles and hypercircuits in hypergraphs, in: P. Hansen, P. W. Fowler, M. Zheng (Eds.), Discrete Mathematical Chemistry, AMS, Providence, 2000, pp. 377-383. · Zbl 0973.92043
[49] A. A. Zykov, Hypergraphs, Usp. Mat. Nauk 29 (1974) 89-154. · Zbl 0307.05134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.