×

Simulations and parameter estimation of a trap-insect model using a finite element approach. (English) Zbl 1519.92342

Summary: Estimating pest population size is of utmost importance in biological control. However field experiments can be difficult and expensive to conduct, with no guarantee that useable results will be produced. In this context, the development of mathematical models and numerical tools is crucial to improve the field experiments by suggesting relevant data which can be used to estimate parameters related to the pest’s biology and to the traps (e.g. duration of the experiments, distance of the releases, etc.). Here we develop a trap-insect model (TIM), based on coupled partial differential equations. The model is studied theoretically and a finite element algorithm is developed and implemented. A protocol for parameter estimation is also proposed and tested, with various data. Among other results, we show that entomological knowledge is absolutely necessary for efficient estimation of parameters, in particular population size.

MSC:

92D45 Pest management
92C17 Cell movement (chemotaxis, etc.)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Anguelov, R.; Dumont, Y.; Lubuma, J. M.S., On nonstandard finite difference schemes in biosciences, AIP Conf. Proc., 1487, 212-223 (2012)
[2] Apple, J. L.; Smith, R. F.E., Integrated Pest Management (1976), Plenum Press: Plenum Press New-York
[3] Bossert, W. H.; Wilson, E. O., The analysis of olfactory communication among animals, J. Theor. Biol., 5, 443-469 (1963)
[4] Branco, M.; Jactel, H.; Franco, J. C.; Mendel, Z., Modelling response of insect trap captures to pheromone dose, Ecol. Model., 197, 247-257 (2006)
[5] Brezis, H., Functional analysis, (Sobolev Spaces and Partial Differential Equations (2011), Springer) · Zbl 1220.46002
[6] Broadbent, S.; Kendall, D. G., The random walk of trichostrongylus retortaeformis, Biometrics, 9, 460-466 (1953)
[7] Byers, J., Modeling distributions of flying insects: Effective attraction radius of pheromone in two and three dimensions, J. Theor. Biol., 256, 81-89 (2009) · Zbl 1400.92602
[8] Choquet, R.; Rouan, L.; Pradel, R., Program e-surge: a software application for fitting multievent models, (Modeling Demographic Processes in Marked Populations (2009), Springer), 845-865
[9] Cianci, D.; Van Den Broek, J.; Caputo, B.; Marini, F.; Torre, A. D.; Heesterbeek, H.; Hartemink, N., Estimating mosquito population size from mark-release-recapture data, J. Med. Entomol., 50, 533-542 (2013)
[10] Cummins, B.; Cortez, R.; Foppa, I. M.; Walbeck, J.; Hyman, J. M., A spatial model of mosquito host-seeking behavior, PLoS Comput. Biol., 8, Article e1002500 pp. (2012)
[11] Cunningham, R.; Couey, H., Mediterranean fruit fly (diptera: Tephritidae): distance/response curves to trimedlure to measure trapping efficiency, Environ. Entomol., 15, 71-74 (1986)
[12] Dufourd, C.; Dumont, Y., Modeling and simulations of mosquito dispersal. the case of aedes albopictus, Biomath, 1, 128-134 (2012)
[13] Dufourd, C.; Dumont, Y., Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control, Comput. Math. Appl., 66, 1695-1715 (2013) · Zbl 1345.34105
[14] Dufourd, C.; Weldon, C.; Anguelov, R.; Dumont, Y., Parameter identification in population models for insects using trap data, Biomath, 2, 1-10 (2013)
[15] Elkinton, J. S.; Carde, R. T., Odor dispersion, (Chemical Ecology of Insects (1984), Springer), 73-91
[16] Ern, A., Theory and Practice of Finite Elements, vol. 159 (2004), Springer · Zbl 1059.65103
[17] Geuzaine, C.; Remacle, J. F., Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods. Engrg., 79, 1309-1331 (2009) · Zbl 1176.74181
[18] Gouagna, L. C.; Dehecq, J. S.; Fontenille, D.; Dumont, Y.; Boyer, S., Seasonal variation in size estimates of Aedes albopictus population based on standard mark-release-recapture experiments in an urban area on reunion island, Acta Trop., 143, 89-96 (2015)
[19] Hecht, F., New development in freefem++, J. Numer. Math., 20, 251-265 (2012) · Zbl 1266.68090
[20] Jones, R., Movement patterns and egg distribution in cabbage butterflies, J. Anim. Ecol., 195-212 (1977)
[21] Kareiva, P.; Shigesada, N., Analyzing insect movement as a correlated random walk, Oecologia, 56, 234-238 (1983)
[22] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theor. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[23] Manoukis, N. C.; Hall, B.; Geib, S. M., A computer model of insect traps in a landscape, Sci. Rep., 4, 1-8 (2014)
[24] Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, SIAP, 11, 431-441 (1963) · Zbl 0112.10505
[26] Meats, A.; Smallridge, C., Short-and long-range dispersal of medfly, ceratitis capitata (dipt., tephritidae), and its invasive potential, J. Appl. Entomol., 131, 518-523 (2007)
[27] Mickens, R., Nonstandard Finite Difference Models of Differential Equations (1994), World Scientific Pub Co Inc. · Zbl 0810.65083
[28] Mocenni, C.; Madeo, D.; Sparacino, E., Linear least squares parameter estimation of nonlinear reaction diffusion equations, Math. Comput. Simulat., 81, 2244-2257 (2011) · Zbl 1221.65250
[29] Nakamura, K.; Kawasaki, K., The active space of the spodoptera litura (f.) sex pheromone and the pheromone component determining this space, Appl. Entomol. Zool., 12, 162-177 (1977)
[30] Okubo, A.; Okubo, A., Diffusion and Ecological Problems: Mathematical Models, vol. 10 (1980), Springer-Verlag Berlin · Zbl 0422.92025
[31] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag, New York · Zbl 0516.47023
[32] Plant, R. E.; Cunningham, R. T., Analyses of the dispersal of sterile mediterranean fruit flies (diptera: Tephritidae) released from a point source, Environ. Entomol., 20, 1493-1503 (1991)
[33] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations, 159-194 (1984), Springer · Zbl 0549.35002
[34] Reddy, J. N., An Introduction to the Finite Element Method, vol. 2 (1993), McGraw-Hill New York
[35] Schlyter, F., Sampling range, attraction range, and effective attraction radius: Estimates of trap efficiency and communication distance in coleopteran pheromone and host attractant systems, J. Appl. Entomol., 114, 439-454 (1992)
[37] Skellam, J., Random dispersal in theoretical populations, Biometrika, 196-218 (1951) · Zbl 0043.14401
[38] Spitzer, F., Principles of Random Walk, vol. 34 (1976), Springer · Zbl 0359.60003
[39] Stinner, R.; Barfield, C.; Stimac, J.; Dohse, L., Dispersal and movement of insect pests, Annu. Rev. Entomol., 28, 319-335 (1983)
[40] White, G. C.; Burnham, K. P., Program mark: survival estimation from populations of marked animals, Bird Study, 46, 120-139 (1999)
[41] Zhigljavsky, A. A.; Pintér, J., Theory of Global Random Search (1991), Springer Netherlands · Zbl 0783.90114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.