×

Ising model on clustered networks: a model for opinion dynamics. (English) Zbl 1519.91195

This paper studies Ising model on clustered networks focusing on a model for opinion dynamics. It analyzes the Ising model on a specific family of clustered networks by identifying the set of metastable and stable states and by estimating the asymptotic behavior of the transition time between them in the low-temperature limit. The statistical mechanics framework of pathwise approach is adopted. The results regarding the tunneling transition and tunneling time for opinion dynamics are proved in two situations including the one without an external magnetic field and the one with a positive external magnetic field.

MSC:

91D30 Social networks; opinion dynamics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Ising, E., Beitrag zur theorie des ferromagnetismus, Z. Phys., 31, 1, 253-258 (1925) · Zbl 1439.82056
[2] Duminil-Copin, H., 100 Years of the (critical) ising model on the hypercubic lattice (2022), arXiv preprint, arXiv:2208.00864, to appear in Proc. Int. Cong. Math. 2022 (1) · Zbl 1535.82013
[3] Galam, S., Fragmentation versus stability in bimodal coalitions, Phys. A, 230, 1-2, 174-188 (1996)
[4] Galam, S., Rational group decision making: A random field ising model at \(T = 0\), Phys. A, 238, 1-4, 66-80 (1997)
[5] Galam, S.; Gefen, Y.; Shapir, Y., Sociophysics: A new approach of sociological collective behaviour. I. mean-behaviour description of a strike, J. Math. Sociol., 9, 1, 1-13 (1982) · Zbl 0496.92015
[6] Galam, S.; Moscovici, S., Towards a theory of collective phenomena: Consensus and attitude changes in groups, Eur. J. Soc. Psychol., 21, 1, 49-74 (1991)
[7] Sîrbu, A.; Loreto, V.; Servedio, V. D.; Tria, F., Opinion dynamics: models, extensions and external effects, (Participatory Sensing, Opinions and Collective Awareness (2017), Springer), 363-401
[8] Stauffer, D., Opinion dynamics and sociophysics, (Encyclopedia of Complexity and Systems Science (2009), Springer New York), 6380-6388
[9] Vazquez, F.; Krapivsky, P. L.; Redner, S., Constrained opinion dynamics: Freezing and slow evolution, J. Phys. A: Math. Gen., 36, 3, L61 (2003) · Zbl 1066.82035
[10] Balankin, A. S.; Martínez-Cruz, M.; Martínez, F. G.; Mena, B.; Tobon, A.; Patiño-Ortiz, J.; Patiño-Ortiz, M.; Samayoa, D., Ising percolation in a three-state majority vote model, Phys. Lett. A, 381, 5, 440-445 (2017)
[11] De Oliveira, M.; Mendes, J.; Santos, M., Nonequilibrium spin models with ising universal behaviour, J. Phys. A: Math. Gen., 26, 10, 2317 (1993)
[12] de Oliveira, M. J., Isotropic majority-vote model on a square lattice, J. Stat. Phys., 66, 1, 273-281 (1992) · Zbl 0925.82179
[13] Xie, Z.; Song, X.; Li, Q., A review of opinion dynamics, Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems, 349-357 (2016)
[14] Lu, A.; Sun, C.; Liu, Y., The impact of community structure on the convergence time of opinion dynamics, Discrete Dyn. Nat. Soc., 2017 (2017) · Zbl 1372.91088
[15] Si, X.; Liu, Y.; Zhang, Z., Opinion dynamics in populations with implicit community structure, Internat. J. Modern Phys. C, 20, 12, 2013-2026 (2009) · Zbl 1186.91172
[16] Li, L.; Fan, Y.; Zeng, A.; Di, Z., Binary opinion dynamics on signed networks based on ising model, Phys. A, 525, 433-442 (2019)
[17] Frahm, K. M.; Shepelyansky, D. L., Ising-PageRank model of opinion formation on social networks, Phys. A, 526, Article 121069 pp. (2019)
[18] Cassandro, M.; Galves, A.; Olivieri, E.; Vares, M. E., Metastable behavior of stochastic dynamics: A pathwise approach, J. Stat. Phys., 35, 5-6, 603-634 (1984) · Zbl 0591.60080
[19] Olivieri, E.; Scoppola, E., Markov chains with exponentially small transition probabilities: First exit problem from a general domain. I. the reversible case, J. Stat. Phys., 79, 3-4, 613-647 (1995) · Zbl 1081.60541
[20] Olivieri, E.; Scoppola, E., Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. the general case, J. Stat. Phys., 84, 5-6, 987-1041 (1996) · Zbl 1081.60542
[21] Olivieri, E.; Vares, M. E., Large Deviations and Metastability (2005), Cambridge University Press
[22] Nardi, F. R.; Zocca, A.; Borst, S. C., Hitting time asymptotics for hard-core interactions on grids, J. Stat. Phys., 162, 2, 522-576 (2015) · Zbl 1335.82026
[23] Cirillo, E. N.M.; Nardi, F. R., Relaxation height in energy landscapes: An application to multiple metastable states, J. Stat. Phys., 150, 6, 1080-1114 (2013) · Zbl 1273.82009
[24] Cirillo, E. N.M.; Nardi, F. R.; Sohier, J., Metastability for general dynamics with rare transitions: Escape time and critical configurations, J. Stat. Phys., 161, 2, 365-403 (2015) · Zbl 1327.82058
[25] Manzo, F.; Nardi, F. R.; Olivieri, E.; Scoppola, E., On the essential features of metastability: Tunnelling time and critical configurations, J. Stat. Phys., 115, 1/2, 591-642 (2004) · Zbl 1157.82381
[26] Apollonio, V.; Jacquier, V.; Nardi, F. R.; Troiani, A., Metastability for the ising model on the hexagonal lattice, Electron. J. Probab., 27, 38 (2022) · Zbl 1487.60174
[27] Bet, G.; Gallo, A.; Kim, S., Metastability of the three-state potts model with general interactions (2022), arXiv preprint, arXiv:2208.11869
[28] Bet, G.; Gallo, A.; Nardi, F. R., Critical configurations and tube of typical trajectories for the potts and ising models with zero external field, J. Stat. Phys., 184, 30 (2021) · Zbl 1477.60135
[29] Bet, G.; Gallo, A.; Nardi, F. R., Metastability for the degenerate potts model with positive external magnetic field under glauber dynamics (2021), arXiv preprint, arXiv:2208.11869
[30] Bet, G.; Gallo, A.; Nardi, F. R., Metastability for the degenerate potts model with negative external magnetic field under glauber dynamics, J. Math. Phys., 63, 12, Article 123303 pp. (2022) · Zbl 1509.82084
[31] Nardi, F. R.; Zocca, A., Tunneling behavior of Ising and Potts models in the low-temperature regime, Stochastic Process. Appl., 129, 11, 4556-4575 (2019) · Zbl 1448.60189
[32] Zocca, A., Low-temperature behavior of the multicomponent Widom-Rowlison model on finite square lattices, J. Stat. Phys., 171, 1, 1-37 (2018) · Zbl 1392.82042
[33] Zocca, A., Tunneling of the hard-core model on finite triangular lattices, Random Struct. Algorithms, 55, 1, 215-246 (2018) · Zbl 1423.82018
[34] Baldassarri, S.; Jacquier, V., Metastability for Kawasaki dynamics on the hexagonal lattice, J. Stat. Phys., 190, 46 (2023) · Zbl 1506.82017
[35] Baldassarri, S.; Nardi, F. R., Metastability in a lattice gas with strong anisotropic interactions under Kawasaki dynamics, Electron. J. Probab., 26, 137 (2021) · Zbl 1483.60103
[36] Baldassarri, S.; Nardi, F. R., Critical droplets and sharp asymptotics for Kawasaki dynamics with strongly anisotropic interactions, J. Stat. Phys., 186, 34 (2022) · Zbl 1484.60075
[37] Baldassarri, S.; Nardi, F. R., Critical droplets and sharp asymptotics for Kawasaki dynamics with weakly anisotropic interactions, Stochastic Process. Appl., 147, 107-144 (2022) · Zbl 1486.60120
[38] den Hollander, F.; Olivieri, E.; Scoppola, E., Metastability and nucleation for conservative dynamics, J. Math. Phys., 41, 3, 1424-1498 (2000) · Zbl 0977.82030
[39] Nardi, F. R.; Olivieri, E.; Scoppola, E., Anisotropy effects in nucleation for conservative dynamics, J. Stat. Phys., 119, 3-4, 539-595 (2005) · Zbl 1073.82026
[40] Cirillo, E. N.M.; Nardi, F. R.; Spitoni, C., Metastability for reversible probabilistic cellular automata with self-interaction, J. Stat. Phys., 132, 3, 431-471 (2008) · Zbl 1207.82039
[41] Cirillo, E. N.M.; Nardi, F. R.; Spitoni, C., Competitive nucleation in reversible probabilistic cellular automata, Phys. Rev. E, 78, 4 (2008)
[42] Cirillo, E. N.M.; Jacquier, V.; Spitoni, C., Metastability of synchronous and asynchronous dynamics, Entropy, 24, 4, 450 (2022)
[43] Bovier, A.; Eckhoff, M.; Gayrard, V.; Klein, M., Metastability and low lying spectra in reversible Markov chains, Comm. Math. Phys., 228, 2, 219-255 (2002) · Zbl 1010.60088
[44] Bovier, A.; den Hollander, F., Metastability (2015), Springer International Publishing · Zbl 1339.60002
[45] Bovier, A.; den Hollander, F.; Nardi, F., Sharp asymptotics for kawasaki dynamics on a finite box with open boundary, Probab. Theory Related Fields, 135, 2, 265-310 (2005) · Zbl 1099.60066
[46] den Hollander, F.; Nardi, F. R.; Troiani, A., Kawasaki dynamics with two types of particles: Stable/metastable configurations and communication heights, J. Stat. Phys., 145, 6, 1423-1457 (2011) · Zbl 1231.82019
[47] den Hollander, F.; Nardi, F.; Troiani, A., Metastability for Kawasaki dynamics at low temperature with two types of particles, Electron. J. Probab., 17, 2 (2012) · Zbl 1263.82035
[48] Nardi, F. R.; Spitoni, C., Sharp asymptotics for stochastic dynamics with parallel updating rule, J. Stat. Phys., 146, 4, 701-718 (2012) · Zbl 1241.82068
[49] Cirillo, E. N.M.; Nardi, F. R.; Spitoni, C., Sum of exit times in a series of two metastable states, Eur. Phys. J. Spec. Top., 226, 10, 2421-2438 (2017)
[50] Bet, G.; Jacquier, V.; Nardi, F. R., Effect of energy degeneracy on the transition time for a series of metastable states, J. Stat. Phys., 184, 1 (2021) · Zbl 1470.60272
[51] Beltrán, J.; Landim, C., Tunneling and metastability of continuous time Markov chains, J. Stat. Phys., 140, 6, 1065-1114 (2010) · Zbl 1223.60061
[52] Beltrán, J.; Landim, C., A martingale approach to metastability, Probab. Theory Related Fields, 161, 1-2, 267-307 (2014) · Zbl 1338.60194
[53] Bianchi, A.; Gaudillière, A., Metastable states, quasi-stationary distributions and soft measures, Stochastic Process. Appl., 126, 6, 1622-1680 (2016) · Zbl 1348.82060
[54] Bianchi, A.; Gaudillière, A.; Milanesi, P., On soft capacities, quasi-stationary distributions and the pathwise approach to metastability, J. Stat. Phys., 181, 3, 1052-1086 (2020) · Zbl 1466.60151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.