×

\(\mathcal{PT}\)-symmetric potentials having continuous spectra. (English) Zbl 1519.81202

Summary: One-dimensional \(\mathcal{PT}\)-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form \(H = p^2 + V(x)\), where \(-\infty < x < \infty\). The potential \(V(x)\) is odd in \(x\), pure imaginary, and vanishes as \(|x|\rightarrow\infty\). Five \(\mathcal{PT}\)-symmetric potentials are studied: the Scarf-II potential \(V_1(x) = iA_1\operatorname{sech}(x)\tanh(x)\), which decays exponentially for large \(|x|\); the rational potentials \(V_2(x) = iA_2x/(1 + x^4)\) and \(V_3(x) = iA_3x/(1 + |x|^3)\), which decay algebraically for large \(|x|\); the step-function potential \(V_4(x) = iA_4\operatorname{sgn}(x) \theta (2.5 - |x|)\), which has compact support; the regulated Coulomb potential \(V_5(x) = iA_5x/(1 + x^2)\), which decays slowly as \(|x|\rightarrow\infty\) and thus may be viewed as a long-range potential. The real parameters \(A_n\) measure the strengths of these potentials. Numerical techniques for solving the time-independent Schrödinger eigenvalue problems associated with these potentials reveal that, in general, the spectra of these Hamiltonians are partly real and partly complex. The real eigenvalues form the continuous part of the spectrum and the complex eigenvalues form the discrete part of the spectrum. The real eigenvalues range continuously in value from 0 to \(+\infty\). The complex eigenvalues occur in discrete complex-conjugate pairs and for \(V_n(x)\) (\(1 \leqslant n \leqslant 4\)) the number of these pairs is finite and increases as the value of the strength parameter \(A_n\) increases. However, for \(V_5(x)\) there is an infinite sequence of discrete eigenvalues with a limit point at the origin. While this sequence is complex, it resembles the Balmer series for the hydrogen atom because it has inverse-square convergence.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett.80 5243 · Zbl 0947.81018 · doi:10.1103/physrevlett.80.5243
[2] Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys.40 2201 · Zbl 1057.81512 · doi:10.1063/1.532860
[3] Dorey P E, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen.34 5679 · Zbl 0982.81021 · doi:10.1088/0305-4470/34/28/305
[4] Dorey P E, Dunning C and Tateo R 2007 J. Phys. A: Math. Theor.40 R205 · Zbl 1120.81044 · doi:10.1088/1751-8113/40/32/r01
[5] Bender C M 2018 PT Symmetry: In Quantum and Classical Physics (Singapore: World Scientific)
[6] Christodoulides D N and Yang J (ed) 2018 Parity-time Symmetry and its Applications(Springer Tracts in Modern Physics vol 280) · doi:10.1007/978-981-13-1247-2
[7] Bender C M, Gianfreda M, Hassanpour N and Jones H F 2016 J. Math. Phys.57 084101 · Zbl 1404.70042 · doi:10.1063/1.4960722
[8] Ahmed Z 2001 Phys. Lett. A 282 343 · Zbl 0984.81043 · doi:10.1016/s0375-9601(01)00218-3
[9] Ahmed Z, Ghosh D, Nathan J A and Parkar G 2015 Phys. Lett. A 379 2424 · Zbl 1364.81122 · doi:10.1016/j.physleta.2015.06.024
[10] Yang J 2017 Opt. Lett.42 4067 · doi:10.1364/ol.42.004067
[11] Konotop V V and Zezyulin D A 2017 Opt. Lett.42 5206 · doi:10.1364/ol.42.005206
[12] Znojil M 2001 Phys. Lett. A 285 7-10 · Zbl 0969.81521 · doi:10.1016/s0375-9601(01)00301-2
[13] Znojil M and Lévai G 2001 Mod. Phys. Lett. A 16 2273-80 · Zbl 1138.81404 · doi:10.1142/s0217732301005722
[14] Mostafazadeh A 2001 Phys. Rev. Lett.102 220402 · doi:10.1103/physrevlett.102.220402
[15] Konotop V V and Zezyulin D A 2019 Phys. Rev. A 99 013823 · doi:10.1103/physreva.99.013823
[16] Naĭmark M A 1960 Amer. Math. Soc. Transl.16 103-93 · Zbl 0100.29504 · doi:10.1090/trans2/016/02
[17] Baişcanbaz-Tunga G and Bairamov E 1999 Czech. Math. J.49 124
[18] Baişcanbaz-Tunga G 2000 J. Math. Anal. Appl.252 278-97 · Zbl 0971.34074 · doi:10.1006/jmaa.2000.6999
[19] Bender C M, Hassanpour N, Hook D W, Klevansky S P, Sunderhauf C and Wen Z 2017 Phys. Rev. A 95 052113 · doi:10.1103/physreva.95.052113
[20] Trefethen L N 2000 Spectral Methods in Mattlab (Philadelphia: Society for Industrial and Applied Mathematics) · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[21] Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) ch 7 · Zbl 0417.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.