×

Effects of endothermic chain-branching reaction on spherical flame initiation and propagation. (English) Zbl 1519.80127


MSC:

80A25 Combustion
76V05 Reaction effects in flows
Full Text: DOI

References:

[1] Frankel, M. L.; Sivashinsky, G. I., On effects due to thermal expansion and Lewis number in spherical flame propagation, Combust. Sci. Technol., 31, 131-138 (1983) · doi:10.1080/00102208308923635
[2] Deshaies, B.; Joulin, G., On the initiation of a spherical flame kernel, Combust. Sci. Technol., 37, 99-116 (1984) · doi:10.1080/00102208408923749
[3] He, L., Critical conditions for spherical flame initiation in mixtures with high Lewis numbers, Combust. Theor. Model., 4, 159-172 (2000) · Zbl 0955.76097 · doi:10.1088/1364-7830/4/2/305
[4] Addabbo, R.; Bechtold, J. K.; Matalon, M., Wrinkling of spherically expanding flames, Proc. Combust. Inst., 29, 1527-1535 (2002) · doi:10.1016/S1540-7489(02)80187-0
[5] Sung, C. J.; Makino, A.; Law, C. K., On stretch-affected pulsating instability in rich hydrogen/air flames: asymptotic analysis and computation, Combust. Flame, 128, 422-434 (2002) · doi:10.1016/S0010-2180(01)00361-3
[6] Chen, Z.; Ju, Y., Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. Theor. Model., 11, 427-453 (2007) · Zbl 1113.80024 · doi:10.1080/13647830600999850
[7] Dold, J. W., Premixed flames modelled with thermally sensitive intermediate branching kinetics, Combust. Theor. Model., 11, 909-948 (2007) · Zbl 1187.80028 · doi:10.1080/13647830701294599
[8] Dold, J. W.; Thatcher, R. W.; Omon-Arancibia, A.; Redman, J., From one-step to chain-branching premixed flame asymptotics, Proc. Combust. Inst., 29, 1519-1526 (2002) · doi:10.1016/S1540-7489(02)80186-9
[9] Dold, J. W.; Weber, R. O.; Thatcher, R. W.; Shah, A. A., Flame balls with thermally sensitive intermediate kinetics, Combust. Theor. Model., 7, 175-203 (2003) · Zbl 1068.80512 · doi:10.1088/1364-7830/7/1/310
[10] Zeldovich, I. B.; Barenblatt, G. I.; Librovich, V. B., Mathematical Theory of Combustion and Explosions (1985), Consultants Bureau: Consultants Bureau, New York
[11] Linan, A.; Williams, F. A., Fundamental Aspects of Combustion (1993), Oxford University Press: Oxford University Press, New York
[12] Zhang, H.; Chen, Z., Spherical flame initiation and propagation with thermally sensitive intermediate kinetics, Combust. Flame, 158, 1520-1531 (2011) · doi:10.1016/j.combustflame.2010.12.031
[13] Zhang, H.; Guo, P.; Chen, Z., Critical condition for the ignition of reactant mixture by radical deposition, Proc. Combust. Inst., 34, 3267-3275 (2013) · doi:10.1016/j.proci.2012.06.035
[14] Zhang, H.; Chen, Z., Bifurcation and extinction limit of stretched premixed flames with chain-branching intermediate kinetics and radiative loss, Combust. Theor. Model., 22, 531-553 (2018) · Zbl 1519.80237 · doi:10.1080/13647830.2018.1430380
[15] Bai, B.; Chen, Z.; Zhang, H.; Chen, S., Flame propagation in a tube with wall quenching of radicals, Combust. Flame, 160, 2810-2819 (2013) · doi:10.1016/j.combustflame.2013.07.008
[16] Zhang, H.; Chen, Z., Effects of heat conduction and radical quenching on premixed stagnation flame stabilised by a wall, Combust. Theor. Model., 17, 682-706 (2013) · Zbl 1516.80027 · doi:10.1080/13647830.2013.792393
[17] Gubernov, V. V.; Sidhu, H. S.; Mercer, G. N., Combustion waves in a model with chain branching reaction and their stability, Combust. Theor. Model., 12, 407-431 (2008) · Zbl 1148.80379 · doi:10.1080/13647830701716948
[18] Gubernov, V. V.; Sidhu, H. S.; Mercer, G. N.; Kolobov, A. V.; Polezhaev, A. A., The effect of Lewis number variation on combustion waves in a model with chain-branching reaction, J. Math. Chem., 44, 816-830 (2008) · Zbl 1217.80130 · doi:10.1007/s10910-008-9363-x
[19] Gubernov, V. V.; Kolobov, A. V.; Polezhaev, A. A.; Sidhu, H. S., Stability of combustion waves in the Zeldovich-Liñán model, Combust. Flame, 159, 1185-1196 (2012) · doi:10.1016/j.combustflame.2011.09.019
[20] Gubernov, V. V.; Kolobov, A. V.; Polezhaev, A. A.; Sidhu, H. S., Analysing the stability of premixed rich hydrogen-air flame with the use of two-step models, Combust. Flame, 160, 1060-1069 (2013) · doi:10.1016/j.combustflame.2013.01.021
[21] Sharpe, G. J., Effect of thermal expansion on the linear stability of planar premixed flames for a simple chain-branching model: The high activation energy asymptotic limit, Combust. Theor. Model., 12, 717-738 (2008) · Zbl 1144.80008 · doi:10.1080/13647830802032849
[22] Sharpe, G. J., Thermal-diffusive instability of premixed flames for a simple chain-branching chemistry model with finite activation energy, SIAM J. Appl. Math., 70, 866-884 (2009) · Zbl 1193.80022 · doi:10.1137/090750366
[23] Gubernov, V. V.; Babushok, V. I.; Minaev, S. S., Phenomenological model of chain-branching premixed flames, Combust. Theor. Model. (2018)
[24] Simon, P. L.; Kalliadasis, S.; Merkin, J. H.; Scott, S. K., Inhibition of flame propagation by an endothermic reaction, IMA J Appl Math, 68, 537-562 (2003) · Zbl 1058.80006 · doi:10.1093/imamat/68.5.537
[25] Gray, B. F.; Kalliadasis, S.; Lazarovici, A.; Macaskill, C.; Merkin, J. H.; Scott, S. K., The suppression of an exothermic branched-chain flame through endothermic reaction and radical scavenging, Proc. Royal Soc. A: Math. Phys. Eng. Sci., 458, 2119-2138 (2002) · Zbl 1013.80006 · doi:10.1098/rspa.2002.0961
[26] Lazarovici, A.; Kalliadasis, S.; Merkin, J. H.; Scott, S. K., Flame quenching through endothermic reaction, J. Eng. Math., 44, 207-228 (2002) · Zbl 1141.80311 · doi:10.1023/A:1020934620657
[27] Gubernov, V. V.; Sharples, J. J.; Sidhu, H. S.; McIntosh, A. C.; Brindley, J., Properties of combustion waves in the model with competitive exo- and endothermic reactions, J. Math. Chem., 50, 2130-2140 (2012) · Zbl 1306.92079 · doi:10.1007/s10910-012-0021-y
[28] Gubernov, V. V.; Minaev, S. S.; Babushok, V. I.; Kolobov, A. V., The effect of depletion of radicals on freely propagating hydrocarbon flames, J. Math. Chem., 53, 2137-2154 (2015) · Zbl 1328.92093 · doi:10.1007/s10910-015-0543-1
[29] Please, C. P.; Liu, F.; McElwain, D. L.S., Condensed phase combustion travelling waves with sequential exothermic or endothermic reactions, Combust. Theor. Model, 7, 129-143 (2003) · Zbl 1068.80527 · doi:10.1088/1364-7830/7/1/307
[30] Qian, C., Sidhu, H.S., Sharples, J.J., Towers, I.N., and Gubernov, V.V., Combustion waves from a sequential exothermic and endothermic reaction, 19th International Congress on Modelling and Simulation, Perth, Australia, 2011.
[31] Egolfopoulos, F. N.; Hansen, N.; Ju, Y.; Kohse-Höinghaus, K.; Law, C. K.; Qi, F., Advances and challenges in laminar flame experiments and implications for combustion chemistry, Prog. Energy Combust. Sci., 43, 36-67 (2014) · doi:10.1016/j.pecs.2014.04.004
[32] Chen, Z., On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure, Combust. Flame, 162, 2442-2453 (2015) · doi:10.1016/j.combustflame.2015.02.012
[33] Faghih, M.; Chen, Z., The constant-volume propagating spherical flame method for laminar flame speed measurement, Sci. Bull., 61, 1296-1310 (2016) · doi:10.1007/s11434-016-1143-6
[34] Lewis, B.; Von Elbe, G., Combustion, Flames and Explosions of Gases (2012), Elsevier: Elsevier, New York
[35] Ronney, P. D., Laser versus conventional ignition of flames, Opt. Eng., 33, 510-522 (1994) · doi:10.1117/12.152237
[36] Joulin, G.; Clavin, P., Linear stability analysis of nonadiabatic flames: Diffusional-thermal model, Combust. Flame, 35, 139-153 (1979) · doi:10.1016/0010-2180(79)90018-X
[37] Clavin, P., Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy Combust. Sci., 11, 1-59 (1985) · doi:10.1016/0360-1285(85)90012-7
[38] Zhang, H.; Guo, P.; Chen, Z., Outwardly propagating spherical flames with thermally sensitive intermediate kinetics and radiative loss, Combust. Sci. Technol., 185, 226-248 (2013) · doi:10.1080/00102202.2012.715607
[39] Chen, Z.; Burke, M. P.; Ju, Y., On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst., 33, 1219-1226 (2011) · doi:10.1016/j.proci.2010.05.005
[40] Law, C. K., Combustion Physics (2010), Cambridge University Press: Cambridge University Press, Cambridge
[41] Chen, Z.; Gou, X.; Ju, Y., Studies on the outwardly and inwardly propagating spherical flames with radiative loss, Combust. Sci. Technol., 182, 124-142 (2010) · doi:10.1080/00102200903299850
[42] Han, W.; Chen, Z., Effects of finite-rate droplet evaporation on the ignition and propagation of premixed spherical spray flame, Combust. Flame, 162, 2128-2139 (2015) · doi:10.1016/j.combustflame.2015.01.011
[43] Chen, Z., Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit, Combust. Flame, 157, 2267-2276 (2010) · doi:10.1016/j.combustflame.2010.07.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.