×

Modelling of soot formation in laminar diffusion flames using a comprehensive CFD-PBE model with detailed gas-phase chemistry. (English) Zbl 1519.76289


MSC:

76N15 Gas dynamics (general theory)
65Y15 Packaged methods for numerical algorithms
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76T15 Dusty-gas two-phase flows
76V05 Reaction effects in flows
80A25 Combustion
80A32 Chemically reacting flows

References:

[1] Lignell, D.; Chen, J.; Smith, P.; Lu, T.; Law, C., The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation, Combust. Flame, 151, 2-28 (2007)
[2] Bond, T., Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380-5552 (2013)
[3] Singh, J., Detailed soot modelling in laminar premixed flames (2006), University of Cambridge
[4] Smooke, M.; Lin, P.; Long, M., Computational and experimental study of a laminar axisymmetric methane-air diffusion flame, Proc. Combust. Inst., 23, 575-582 (1991)
[5] Smooke, M.; Hall, R.; Colket, M.; Fielding, J.; Long, M.; McEnally, C.; Pfefferle, L., Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames, Combust. Theory Model., 8, 593-606 (2004)
[6] Santoro, R.; Semerjian, H.; Dobbins, R., Soot particle measurements in diffusion flames, Combust. Flame, 51, 203-218 (1983)
[7] Santoro, R.; Yeh, T.; Horvath, J.; Semerjian, H., The transport and growth of soot particles in laminar diffusion flames, Combust. Sci. Technol., 53, 89-115 (1987)
[8] Liu, F.; Guo, H.; Smallwood, G. J.; Gülder, Ö. L., Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames, Combust. Theory Model., 7, 301-315 (2003)
[9] Kennedy, I.; Yam, C., Modeling and measurements of soot and species in a laminar diffusion flame, Combust. Flame, 107, 368-382 (1996)
[10] Demarco, R.; Consalvi, J. L.; Fuentes, A., Influence of radiative property models on soot production in laminar coflow ethylene diffusion flames, Eurotherm Conference No. 95: Computational Thermal Radiation in Participating Media IV, 91-101 (2012)
[11] Khosousi, A.; Dworkin, S. B., Detailed modelling of soot oxidation by O_2 and OH in laminar diffusion flames, Combust. Flame, 35, 1903-1910 (2015)
[12] Kong, W.; Liu, F., Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities, Combust. Theory Model., 13, 993-1023 (2009) · Zbl 1184.80010
[13] Kronenburg, A.; Bilger, R.; Kent, J., Modeling soot formation in turbulent methane-air jet diffusion flames, Combust. Flame, 121, 24-40 (2000)
[14] Zhang, Q.; Guo, H.; Liu, F.; Smallwood, G.; Thomson, M., Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model, Proc. Combust. Inst., 32, 761-768 (2009)
[15] Hounslow, M.; Ryall, R.; Marshall, V., A discretized population balance for nucleation, growth and aggregation, AIChE J., 34, 1821-1832 (1988)
[16] Rigopoulos, S.; Jones, A., Finite-element scheme for solution of the dynamic population balance equation, AIChE J., 49, 1127-1139 (2003)
[17] Qamar, S.; Elsner, M.; Angelov, I. A.; Warnecke, G.; Seidel-Morgenstern, A., A comparative study of high resolution schemes for solving population balances in crystallization, Comput. & Chem. Engrg, 30, 1119-1131 (2006)
[18] Wang, H.; Laskin, A., A comprehensive reaction model of ethylene and acetylene combustion (2000)
[19] Leung, K.; Lindstedt, R.; Jones, W., A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. Flame, 87, 289-305 (1991)
[20] Lindstedt, R.; Bockhorn, H., Simplified soot nucleation and surface growth steps for non-premixed flames, Soot Formation in Combustion, 417-441 (1994), Springer-Verlag: Springer-Verlag, Berlin
[21] Smooke, M.; Long, M.; Connelly, B.; Colket, M.; Hall, R., Soot formation in laminar diffusion flames, Combust. Flame, 143, 613-628 (2005)
[22] Appel, J.; Bockhorn, H.; Frenklach, M., Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C_2 hydrocarbons, Combust. Flame, 121, 122-136 (2000)
[23] Colket, M.; Hall, R.; Bockhorn, H., Successes and uncertainties in modeling soot formation in laminar, premixed flames, Soot Formation in Combustion, 442-470 (1994), Springer-Verlag: Springer-Verlag, Berlin
[24] Harris, S.; Weiner, A., Soot particle growth in premixed toluene/ethylene flames, Combust. Sci. Technol., 38, 75-87 (1984)
[25] Nagle, J.; Strickland-Constable, R., Oxidation of carbon 1000-2000 °C, Proceedings of the 5th Conference on Carbon (1962), Pergamon Press: Pergamon Press, New York
[26] Neoh, K. G.; Howard, J. B.; Sarofim, A. F.; Siegla, D. C.; Smith, G. W., Soot oxidation in flames, Particulate Carbon: Formation During Combustion, 261-277 (1981), Plenum Press: Plenum Press, New York
[27] Hall, R. J.; Smooke, M. D.; Colket, M. B.; Sawyer, R. F.; Dryer, F. L., Predictions of soot dynamics in opposed jet diffusion flames, Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, 189-229 (1997), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers, Amsterdam
[28] Megaridis, C.; Dobbins, R., Soot aerosol dynamics in a laminar ethylene diffusion flame, Proc. Combust. Inst., 22, 353-362 (1988)
[29] van Leer, B., Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second order scheme, J. Comp. Physics, 14, 361-270 (1974) · Zbl 0276.65055
[30] Zhang, Q.; Thomson, M.; Guo, H.; Liu, F.; Smallwood, G., A numerical study of soot aggregate formation in a laminar coflow diffusion flame, Combust. Flame, 156, 697-705 (2009)
[31] Dworkin, S. B.; Zhang, Q.; Thomson, M. J.; Slavinskaya, N. A.; Riedel, U., Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame, Combust. Flame, 158, 1682-1695 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.