×

Optimum design of nonlinear structures via deep neural network-based parameterization framework. (English) Zbl 1519.74054

The authors solve the sizing optimization problem for truss structures. The mathematical model has the form \begin{align*} &\text{Minimize}\ W(\mathbf{A})= \sum_{k=1}^{n_g} A_k\sum_{i=1}^{m_k} \rho_iL_i,\\ &\text{subjected to}\ g_j(\mathbf{A})=\frac{\Delta_j}{|\Delta_j|}-1 \le 0,\ j=1,2,...p,\ A_k^{\mathrm{law}}\le A_k \le A_k^{up},\ k=1,...,n_g. \end{align*} The problem is rewritten in a form \[ \text{Minimize}\ \mathcal{L}(\mathbf{A})=(1+\varepsilon_1 c)^{\varepsilon_2}W(\mathbf{A}),\ c=\sum_{j=1}^p\max (0,g_j(\mathbf{A}), \] which is solved using a deep neural network.

MSC:

74P05 Compliance or weight optimization in solid mechanics
74S99 Numerical and other methods in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
68T07 Artificial neural networks and deep learning

Software:

TOuNN; EGO; Sherpa; GitHub; Adam; JAX
Full Text: DOI

References:

[1] Abueidda, D. W.; Koric, S.; Sobh, N. A., Topology optimization of 2D structures with nonlinearities using deep learning, Comput. Struct., 237, Article 106283 pp. (2020)
[2] Afshari, S. S.; Enayatollahi, F.; Xu, X.; Liang, X., Machine learning-based methods in structural reliability analysis: A review, Reliab. Eng. Syst. Saf., 219, Article 108223 pp. (2022)
[3] Anitescu, C.; Atroshchenko, E.; Alajlan, N.; Rabczuk, T., Artificial neural network methods for the solution of second order boundary value problems, Comput. Mater. Contin., 59, 1, 345-359 (2019)
[4] Asali, A.; Ravid, D.; Shalev, H.; David, L.; Yogev, E.; Yogev, S. S.; Schonman, R.; Biron-Shental, T.; Miller, N., Intrahepatic cholestasis of pregnancy: Machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data, Arch. Gynecol. Obstet., 304, 3, 641-647 (2021)
[5] Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary, C.; Maclaurin, D.; Wanderman-Milne, S., JAX: composable transformations of Python+ NumPy programs, 2018, 4, 16 (2020), URL http://github.com/google/jax
[6] Chandrasekhar, A.; Sridhara, S.; Suresh, K., AuTO: A framework for automatic differentiation in Topology Optimization, Struct. Multidiscip. Optim., 64, 6, 4355-4365 (2021)
[7] Chandrasekhar, A.; Suresh, K., TOuNN: Topology Optimization using Neural Networks, Struct. Multidiscip. Optim., 63, 3, 1135-1149 (2021)
[8] Coda, H. B.; Paccola, R. R., A total-Lagrangian position-based FEM applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse, Finite Elem. Anal. Des., 91, 1-15 (2014)
[9] De Borst, R.; Crisfield, M. A.; Remmers, J. J.; Verhoosel, C. V., Nonlinear Finite Element Analysis of Solids and Structures (2012), John Wiley & Sons · Zbl 1300.74002
[10] El-Sayed, M. E.; Ridgely, B. J.; Sandgren, E., Nonlinear structural optimization using goal programming, Comput. Struct., 32, 1, 69-73 (1989) · Zbl 0688.73060
[11] Hajela, P.; Berke, L., Neural network based decomposition in optimal structural synthesis, Comput. Syst. Eng., 2, 5-6, 473-481 (1991)
[12] Hajela, P.; Berke, L., Neurobiological computational models in structural analysis and design, Comput. Struct., 41, 4, 657-667 (1991) · Zbl 0752.73053
[13] Hasançebi, O., Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures, Comput. Struct., 86, 1-2, 119-132 (2008)
[14] Hertel, L.; Collado, J.; Sadowski, P.; Ott, J.; Baldi, P., Sherpa: Robust hyperparameter optimization for machine learning, SoftwareX, 12, Article 100591 pp. (2020)
[15] Hoyer, S.; Sohl-Dickstein, J.; Greydanus, S., Neural reparameterization improves structural optimization (2019), arXiv preprint arXiv:1909.04240
[16] Hrinda, G. A.; Nguyen, D. T., Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach, Finite Elem. Anal. Des., 44, 15, 933-950 (2008)
[17] Jia, D.-W.; Wu, Z.-Y., A Laplace asymptotic integral-based reliability analysis method combined with artificial neural network, Appl. Math. Model. (2022) · Zbl 1505.90048
[18] Jones, D. R.; Schonlau, M.; Welch, W. J., Efficient global optimization of expensive black-box functions, J. Global Optim., 13, 4, 455-492 (1998) · Zbl 0917.90270
[19] Kadapa, C., A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics, Eng. Struct., 234, Article 111755 pp. (2021)
[20] Kameshki, E.; Saka, M., Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm, Comput. Struct., 79, 17, 1593-1604 (2001)
[21] Kameshki, E.; Saka, M., Optimum geometry design of nonlinear braced domes using genetic algorithm, Comput. Struct., 85, 1-2, 71-79 (2007)
[22] Kaveh, A.; Rahami, H., Nonlinear analysis and optimal design of structures via force method and genetic algorithm, Comput. Struct., 84, 12, 770-778 (2006) · Zbl 1111.74034
[23] Khot, N., Nonlinear analysis of optimized structure with constraints on systemstability, AIAA J., 21, 8, 1181-1186 (1983) · Zbl 0516.73101
[24] Khot, N.; Kamat, M., Minimum weight design of truss structures with geometric nonlinear behavior, AIAA J., 23, 1, 139-144 (1985) · Zbl 0555.73087
[25] Kingma, D. P.; Ba, J., Adam: A method for stochastic optimization (2014), arXiv preprint arXiv:1412.6980
[26] Korenciak, M., Go Game Move Prediction Using Convolutional Neural Network (2018), Jyväskylän ammattikorkeakoulu
[27] Lee, S.; Kim, H.; Lieu, Q. X.; Lee, J., CNN-based image recognition for topology optimization, Knowl.-Based Syst., 198, Article 105887 pp. (2020)
[28] Lee, S.; Park, S.; Kim, T.; Lieu, Q. X.; Lee, J., Damage quantification in truss structures by limited sensor-based surrogate model, Appl. Acoust., 172, Article 107547 pp. (2021)
[29] Lee, S.; Vo, T. P.; Thai, H.-T.; Lee, J.; Patel, V., Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm, Eng. Struct., 238, Article 112109 pp. (2021)
[30] Li, W.; Bazant, M. Z.; Zhu, J., A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches, Comput. Methods Appl. Mech. Engrg., 383, Article 113933 pp. (2021) · Zbl 1506.74183
[31] Li, B.; Huang, C.; Li, X.; Zheng, S.; Hong, J., Non-iterative structural topology optimization using deep learning, Comput. Aided Des., 115, 172-180 (2019)
[32] Lieu, Q. X.; Nguyen, K. T.; Dang, K. D.; Lee, S.; Kang, J.; Lee, J., An adaptive surrogate model to structural reliability analysis using deep neural network, Expert Syst. Appl., 189, Article 116104 pp. (2022)
[33] Mai, H. T.; Kang, J.; Lee, J., A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior, Finite Elem. Anal. Des., 196, Article 103572 pp. (2021)
[34] Mai, H. T.; Lieu, Q. X.; Kang, J.; Lee, J., A novel deep unsupervised learning-based framework for optimization of truss structures, Eng. Comput., 1-24 (2022)
[35] Mai, H. T.; Lieu, Q. X.; Kang, J.; Lee, J., A robust unsupervised neural network framework for geometrically nonlinear analysis of inelastic truss structures, Appl. Math. Model. (2022) · Zbl 1503.74083
[36] Missoum, S.; Gürdal, Z.; Gu, W., Optimization of nonlinear trusses using a displacement-based approach, Struct. Multidiscip. Optim., 23, 3, 214-221 (2002)
[37] Nguyen-Thanh, V. M.; Zhuang, X.; Rabczuk, T., A deep energy method for finite deformation hyperelasticity, Eur. J. Mech. A Solids, 80, Article 103874 pp. (2020) · Zbl 1472.74213
[38] Pezeshk, S.; Camp, C.; Chen, D., Design of nonlinear framed structures using genetic optimization, J. Struct. Eng., 126, 3, 382-388 (2000)
[39] Ramasamy, J.; Rajasekaran, S., Artificial neural network and genetic algorithm for the design optimizaton of industrial roofs—A comparison, Comput. Struct., 58, 4, 747-755 (1996) · Zbl 0900.73508
[40] Riks, E., An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 7, 529-551 (1979) · Zbl 0408.73040
[41] Saka, M.; Ulker, M., Optimum design of geometrically nonlinear space trusses, Comput. Struct., 42, 3, 289-299 (1992)
[42] Sonmez, M., Artificial Bee Colony algorithm for optimization of truss structures, Appl. Soft Comput., 11, 2, 2406-2418 (2011)
[43] Srinivasan, S.; Saghir, M. Z., Modeling of thermotransport phenomenon in metal alloys using artificial neural networks, Appl. Math. Model., 37, 5, 2850-2869 (2013) · Zbl 1351.74021
[44] Thai, H.-T.; Nguyen, T.-K.; Lee, S.; Patel, V. I.; Vo, T. P., Review of nonlinear analysis and modeling of steel and composite structures, Int. J. Struct. Stab. Dyn., 20, 04, Article 2030003 pp. (2020)
[45] Trinh, D. T.; Lee, S.; Kang, J.; Lee, J., Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes, Eur. J. Mech. A Solids, Article 104584 pp. (2022) · Zbl 1493.74070
[46] Truong, T. T.; Dinh-Cong, D.; Lee, J.; Nguyen-Thoi, T., An effective Deep Feedforward Neural Networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data, J. Build. Eng., 30, Article 101244 pp. (2020)
[47] Truong, T. T.; Lee, S.; Lee, J., An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams, Compos. Struct., 233, Article 111517 pp. (2020)
[48] Truong, T. T.; Lee, J.; Nguyen-Thoi, T., Joint damage detection of structures with noisy data by an effective deep learning framework using autoencoder-convolutional gated recurrent unit, Ocean Eng., 243, Article 110142 pp. (2022)
[49] Vo, T. P.; Lee, J., Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory, Arch. Appl. Mech., 81, 4, 419-435 (2011) · Zbl 1271.74273
[50] Wempner, G. A., Discrete approximations related to nonlinear theories of solids, Int. J. Solids Struct., 7, 11, 1581-1599 (1971) · Zbl 0222.73054
[51] Zehnder, J.; Li, Y.; Coros, S.; Thomaszewski, B., NTopo: Mesh-free topology optimization using implicit neural representations, Adv. Neural Inf. Process. Syst., 34 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.