×

A model for rubber-like materials with three parameters obtained from a tensile test. (English) Zbl 1519.74005

Summary: Based on our recent findings on the chains orientational distribution in deformed rubber-like materials, we present a novel, accurate and simple non-affine model for isotropic, incompressible polymers. The model has only three material parameters that are easily calibrated from the characteristic behaviour of a tensile test: the initial slope, the slope of the mid-range, and the locking stretch. Once calibrated, the proposal reproduces accurately the behaviour of the material under the general deformation states for moderately large stretches measured by S. Kawabata et al. [Macromolecules 14, No. 1, 154–162 (1981; doi:10.1021/ma50002a032)] (rubber) and T. Kawamura et al. [Macromolecules 34, No. 23, 8252–8260 82001; doi:10.1021/ma002165y)] (silicone), and at least for three deformation states approaching the locking behaviour (Treloar’s tests on rubber).

MSC:

74B20 Nonlinear elasticity
74A20 Theory of constitutive functions in solid mechanics

References:

[1] Amores, V.; Benítez, J.; Montáns, F., Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers, Comput. Struct., 231, Article 106209 pp. (2020)
[2] Amores, V.; Nguyen, K.; Montáns, F., On the network orientational affinity assumption in polymers and the micro-macro connection through the chain stretch, J. Mech. Phys. Solids, 148, Article 104279 pp. (2021)
[3] Anssari-Benam, A.; Bucchi, A.; Destrade, M.; Saccomandi, G., The generalised mooney space for modelling the response of rubber-like materials, J. Elasticity, 1-15 (2022) · Zbl 1511.74002
[4] Anssari-Benam, A.; Bucchi, A.; Saccomandi, G., On the central role of the invariant I2 in nonlinear elasticity, Internat. J. Engrg. Sci., 163, Article 103486 pp. (2021) · Zbl 07375789
[5] Anssari-Benam, A.; Horgan, C. O., A three-parameter structurally motivated robust constitutive model for isotropic incompressible unfilled and filled rubber-like materials, Eur. J. Mech. A Solids, 95 (2022) · Zbl 1501.74004
[6] Anthony, R. L.; Caston, R. H.; Guth, E., Equations of state for natural and synthetic rubber-like materials. I. Unaccelerated natural soft rubber, J. Phys. Chem., 46, 8, 826-840 (1942)
[7] Arruda, E.; Boyce, M., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412 (1993) · Zbl 1355.74020
[8] Arruda, E.; Boyce, M., Constitutive models of rubber elasticity: A review, Rubber Chem. Technol., 73, 504-522 (2000)
[9] Bazant, Z.; Oh, B., Efficient numerical integration on the surface of a sphere, ZAMM-J. Appl. Math. Mech. / Z. Angew. Math. Mech., 66, 1, 37-49 (1986) · Zbl 0597.65016
[10] Benítez, J.; Montáns, F., The mechanical behavior of skin: Structures and models for the finite element analysis, Comput. Struct., 190, 75-107 (2017)
[11] Benítez, J.; Montáns, F., A simple and efficient numerical procedure to compute the inverse langevin function with high accuracy, J. Non-Newton. Fluid Mech., 261, 153-163 (2018)
[12] Bergström, J., Mechanics of Solid Polymers (2015), Elsevier: Elsevier Amsterdam
[13] Carroll, M. M., Molecular chain networks and strain energy functions in rubber elasticity, Phil. Trans. R. Soc. A, 377, 20180067 (2019)
[14] Chagnon, G.; Rebouah, M.; Favier, D., Hyperelastic energy densities for soft biological tissues: A review, J. Elasticity, 120, 129-160 (2015) · Zbl 1432.74151
[15] Crespo, J.; Latorre, M.; Monáns, F., WYPIWYG hyperelasticity for isotropic, compressible materials, Comput. Mech., 59, 73-92 (2017) · Zbl 1398.74023
[16] Destrade, M.; Saccomandi, G.; Sgura, I., Methodical fitting for mathematical models of rubber-like materials, Proc. R. Soc. A, 473, 2198, Article 20160811 pp. (2017) · Zbl 1404.74016
[17] Edwards, S.; Vilgis, T., The tube model theory of rubber elasticity, Rep. Progr. Phys., 51, 243-297 (1988)
[18] Flory, P., Statistical Mechanics of Chain Molecules (1969), Interscience: Interscience New York
[19] Flory, P.; Rehner, J. J., Statistical mechanics of cross-linked polymer networks, J. Chem. Phys., 11, 11, 512-520 (1943)
[20] Frankel, A.; Jones, R.; Swiler, L., Tensor basis Gaussian process models of hyperelastic materials, J. Mach. Learn. Model. Comput., 1, 1, 1-17 (2020)
[21] Ghaderi, A.; Motovati, V.; Dargazany, R., A physics-informed assembly of feed-forward neural network engines to predict inelasticity in cross-linked polymers, Polymers, 12, 11, 2628 (2020)
[22] Heinrich, G.; Kaliske, M.; Küppel, M.; Mark, J.; Straube, E.; Vilgis, T., The thermoelasticity of rubberlike materials and related constitutive laws, J. Macromol. Sci., 40, 1, 87-93 (2003)
[23] Ibañez, R.; Borzacchiello, D.; Aguado, J.; Abisset-Chavanne, E.; Cueto, E.; Ladeveze, P.; Chinesta, F., Data-driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput. Mech., 60, 813-826 (2017) · Zbl 1387.74015
[24] Kaliske, M.; Heinrich, G., An extended tube-model for rubber elasticity: Statistical-mechanical theory and finite element implementation, Rubber Chem. Technol., 72, 4, 602-632 (1999)
[25] Kawabata, S.; Matsuda, M.; Tei, K.; Kawai, H., Experimental survey of the strain energy density of isoprene rubber, Macromolecules, 14, 154-162 (1981)
[26] Kawamura, T.; Urayama, K.; Kohjiya, S., Multiaxial deformations of end-linked poly(dimethylsiloxane) networks. 1. phenomenological approach tro strain energy density function, Macromolecules, 34, 8252-8260 (2001)
[27] Kiêm, V.; Itskov, M., Analytical network-averaging of the tube model: Rubber elasticity, J. Mech. Phys. Solids, 95, 254-269 (2016)
[28] Kroon, M., An 8-chain model for rubber-like materials accounting for non-affine chain deformations and topological constraints, J. Elasticity, 102, 99-116 (2011) · Zbl 1383.74013
[29] Kuhn, W., Über die gestalt fadenförmiger moleküle in lösungen, Kolloid-Zeitschrift, 59, 208-216 (1934)
[30] Kuhn, W., Beziehungen zwischen molekülgrösse, statistischer molekülgestalt und elastischen eigenschaften hochpolymerer stoffe, Kolloid-Zeitschrift, 76, 258-271 (1936)
[31] Latorre, M.; De Rosa, E.; Montáns, F., Understanding the need of the compression branch to characterize hyperelastic materials, Int. J. Non-Linear Mech., 89, 14-24 (2017)
[32] Latorre, M.; Montáns, F., What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity, Comput. Mech., 53, 1279-1298 (2014) · Zbl 1398.74028
[33] Marckmann, G.; Verron, E., Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol., 79, 5, 835-858 (2006)
[34] Mark, J.; Erman, B., Rubberlike Elasticity: A Molecular Primer (1988), Wiley: Wiley New York
[35] Miehe, C.; Göktepe, S.; Lulei, F., A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity, J. Mech. Phys. Solids, 52, 2617-2660 (2004) · Zbl 1091.74008
[36] Mooney, M., A theory of large elastic deformations, J. Appl. Phys., 11, 582 (1940) · JFM 66.1021.04
[37] Nguyen-Thanh, V.; Zhuang, T.; Rabczuk, X., A deep energy method for finite deformation hyperelasticity, Eur. J. Mech. A Solids, 80, Article 103874 pp. (2020) · Zbl 1472.74213
[38] Ogden, R. W., Non-Linear Elastic Deformations (1997), Courier Corporation
[39] Ogden, R.; Saccomandi, G.; Sgura, I., Fitting hyperelastic models to experimental data, Comput. Mech., 34, 6, 484-502 (2004) · Zbl 1109.74320
[40] Pucci, E.; Saccomandi, G., A note on the gent model for rubber-like materials, Rubber Chem. Technol., 75, 5, 839-852 (2002)
[41] Puglisi, G.; Saccomandi, G., Multi-scale modelling of rubber-like materials and soft tissues: an appraisal, Proc. Math. Phys. Eng. Sci., 472, Article 20160060 pp. (2016)
[42] Rivlin, R., Large elastic deformations of isotropic materials: IV. Further developments of the general theory, Phil. Trans. R. Soc. A, 241, 379-397 (1948) · Zbl 0031.42602
[43] Rivlin, R.; Saunders, D., Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Phil. Trans. R. Soc. A, 243, 865, 251-288 (1951) · Zbl 0042.42505
[44] Steinmann, P.; Hossain, M.; Possart, G., Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data, Arch. Appl. Mech., 82, 1183-1217 (2012) · Zbl 1293.74027
[45] Sussman, T.; Bathe, J. K., A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data, Commun. Numer. Methods. Eng., 25, 1, 53-63 (2008) · Zbl 1156.74008
[46] Treloar, L., Stress-strain data for vulcanized rubber under various types of deformation, Rubber Chem. Technol., 17, 4, 813-825 (1944)
[47] Treloar, L., The Physics of Rubber Elasticity (1975), Oxford University Press · Zbl 0347.73042
[48] Valanis, K.; Landel, R., The strain energy function of a hyperelastic material in terms of the extension ratios, J. Appl. Phys., 38, 2997 (1967)
[49] Verron, E., Questioning numerical integration methods for microsphere (and microplane) constitutive equations, Mech. Mater., 89, 216-228 (2015)
[50] Wen, Q.; Basu, A.; Janmey, P.; Yodh, A., Non-affine deformations in polymer hydrogels, Soft Matter, 8, 8039-8049 (2012)
[51] Wu, P.; van der Giessen, E., On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, 41, 3, 427-456 (1993) · Zbl 0825.73103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.