×

Circulant \(L\)-ensembles in the thermodynamic limit. (English) Zbl 1519.60009

Summary: \(L\)-ensembles are a class of determinantal point processes which can be viewed as a statistical mechanical systems in the grand canonical ensemble. Circulant \(L\)-ensembles are the subclass which are locally translationally invariant and furthermore subject to periodic boundary conditions. Existing theory can very simply be specialised to this setting, allowing for the derivation of formulas for the system pressure, and the correlation kernel, in the thermodynamic limit. For a one-dimensional domain, this is possible when the circulant matrix is both real symmetric, or complex Hermitian. The special case of the former having a Gaussian functional form for the entries is shown to correspond to free fermions at finite temperature, and be generalisable to higher dimensions. A special case of the latter is shown to be the statistical mechanical model introduced by Gaudin to interpolate between Poisson and unitary symmetry statistics in random matrix theory. It is shown in all cases that the compressibility sum rule for the two-point correlation is obeyed, and the small and large distance asymptotics of the latter are considered. Also, a conjecture relating the asymptotic form of the hole probability to the pressure is verified.

MSC:

60B20 Random matrices (probabilistic aspects)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
15B52 Random matrices (algebraic aspects)

Software:

spatstat

References:

[1] Husimi, K., Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan, 22, 264-314 (1940) · JFM 66.1175.02
[2] Macchi, O., The coincidence approach to stochastic point processes, Adv. Appl. Probab., 7, 83-122 (1975) · Zbl 0366.60081 · doi:10.1017/s0001867800040313
[3] Dyson, F. J., Statistical theory of the energy levels of complex systems. III, J. Math. Phys., 3, 166-175 (1962) · Zbl 0105.41604 · doi:10.1063/1.1703775
[4] Ginibre, J., Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys., 6, 440-449 (1965) · Zbl 0127.39304 · doi:10.1063/1.1704292
[5] Alastuey, A.; Jancovici, B., On the classical two-dimensional one-component Coulomb plasma, J. Phys. France, 42, 1-12 (1981) · doi:10.1051/jphys:019810042010100
[6] Gaudin, M., Une famille à un paramètre d’ensembles unitaires, Nucl. Phys., 85, 545-575 (1966) · doi:10.1016/0029-5582(66)90322-1
[7] Gaudin, M., L’isotherme critique d’un plasma sur réseau (β = 2, d = 2, n = 2), J. Phys. France, 46, 1027-1042 (1985) · doi:10.1051/jphys:019850046070102700
[8] Kasteleyn, P. W., Graph theory and crystal physics, Graph Theory and Theoretical Physics, 43-110 (1967), London: Academic, London · Zbl 0205.28402
[9] Dyson, F. J., A Brownian‐motion model for the eigenvalues of a random matrix, J. Math. Phys., 3, 1191-1198 (1962) · Zbl 0111.32703 · doi:10.1063/1.1703862
[10] Fisher, M. E., Walks, walls, wetting, and melting, J. Stat. Phys., 34, 667-729 (1984) · Zbl 0589.60098 · doi:10.1007/bf01009436
[11] Lieb, E.; Mattis, D. C., Mathematical Physics in One Dimension (1966), NewYork: Academic, NewYork
[12] Mehta, M. L., Random Matrices (1991), New York: Academic, New York · Zbl 0780.60014
[13] Forrester, P. J., Exact results for two-dimensional Coulomb systems, Phys. Rep., 301, 235-270 (1998) · doi:10.1016/s0370-1573(98)00012-x
[14] Borodin, A.; Olshanski, G., Distributions on partitions, point processes, and the hypergeometric kernel, Commun. Math. Phys., 211, 335-358 (2000) · Zbl 0966.60049 · doi:10.1007/s002200050815
[15] Johansson, K., Non-intersecting paths, random tilings and random matrices, Probab. Theor. Related Fields, 123, 225-280 (2002) · Zbl 1008.60019 · doi:10.1007/s004400100187
[16] Bogoliubov, N. M., XX0 Heisenberg chain and random walks, J. Math. Sci., 138, 5636-5643 (2006) · doi:10.1007/s10958-006-0332-2
[17] Hough, J. B.; Krishnapur, M.; Peres, Y.; Virág, B., Zeros of Gaussian Analytic Functions and Determinantal Point Processes (2009), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1190.60038
[18] Torquato, S.; Scardicchio, A.; Zachary, C. E., Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory, J. Stat. Mech., P110019 (2008) · Zbl 1456.82079 · doi:10.1088/1742-5468/2008/11/p11019
[19] Forrester, P. J., Log-gases and Random Matrices (2010), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1217.82003
[20] Katori, M., Bessel Processes, Schramm-Loewner Evolution, and the Dyson model (2016), Berlin: Springer, Berlin
[21] Dean, D. S.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Noninteracting fermions in a trap and random matrix theory, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.81635 · doi:10.1088/1751-8121/ab098d
[22] Soshnikov, A., Determinantal random point fields, Russ. Math. Surv., 55, 923-975 (2000) · Zbl 0991.60038 · doi:10.1070/rm2000v055n05abeh000321
[23] Daley, D. J.; Vere-Jones, D., An Introduction to the Theory of Point Processes: Elementary Theory and Methods, vol 1 (2003), New York: Springer, New York · Zbl 1026.60061
[24] Lyons, R., Determinantal probability measures, Publ. Math., 98, 167-212 (2003) · Zbl 1055.60003 · doi:10.1007/s10240-003-0016-0
[25] Shirai, T.; Takahashi, Y., Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, J. Funct. Anal., 205, 414-463 (2003) · Zbl 1051.60052 · doi:10.1016/s0022-1236(03)00171-x
[26] Borodin, A.; Diaconis, P.; Fulman, J., On adding a list of numbers (and other one-dependent determinantal processes), Bull. Am. Math. Soc., 47, 639 (2010) · Zbl 1230.05292 · doi:10.1090/s0273-0979-2010-01306-9
[27] Borodin, A.; Akemann, G.; Baik, J.; di Francesco, P., Determinantal point processes, The Oxford Handbook of Random Matrix Theory, 231-249 (2011), Oxford: Oxford University Press, Oxford · Zbl 1238.60055
[28] Kulesza, A.; Taskar, B., Determinantal point processes for machine learning, FNT Mach. Learn., 5, 123-286 (2012) · Zbl 1278.68240 · doi:10.1561/2200000044
[29] Lavancier, F.; Møller, J.; Rubak, E., Determinantal point process models and statistical inference, J. R. Stat. Soc. B, 77, 853-877 (2015) · Zbl 1414.62403 · doi:10.1111/rssb.12096
[30] Pastur, L.; Shcherbina, M., Eigenvalue Distribution of Large Random Matrices (2011), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1244.15002
[31] Bufetov, A. I.; Qiu, Y., Determinantal point processes associated with Hilbert spaces of holomorphic functions, Commun. Math. Phys., 351, 1-44 (2017) · Zbl 1406.60073 · doi:10.1007/s00220-017-2840-y
[32] Katori, M.; Shirai, T., Partial isometries, duality, and determinantal point processes (2021)
[33] Forrester, P. J., Statistical properties of the eigenvalue motion of Hermitian matrices, Phys. Lett. A, 173, 355-359 (1993) · doi:10.1016/0375-9601(93)90249-y
[34] Broman, E. I., One-dependent trigonometric determinantal processes are two-block-factors, Ann. Probab., 33, 601-609 (2005) · Zbl 1067.60010 · doi:10.1214/009117904000000595
[35] Dai, H.; Geary, Z.; Kadanoff, L. P., Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices, J. Stat. Mech. (2009) · Zbl 1456.15005 · doi:10.1088/1742-5468/2009/05/p05012
[36] Mondal, T.; Sadhukhan, S.; Shukla, P., Extended states with Poisson spectral statistics, Phys. Rev. E, 95 (2017) · doi:10.1103/physreve.95.062102
[37] Bose, A., Patterned Random Matrices (2018), London: Chapman and Hall, London · Zbl 1400.15001
[38] Mondal, T.; Shukla, P., Statistical analysis of chiral structured ensembles: role of matrix constraints, Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.022124
[39] Bogomolny, E., Spectral statistics of random Toeplitz matrices, Phys. Rev. E, 102, 04101(R) (2020) · doi:10.1103/physreve.102.040101
[40] Hansen, J-P; McDonald, I. R., Theory of Simple Liquids (2006), New York: Academic, New York
[41] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1927), Cambridge: Cambridge University Press, Cambridge · JFM 53.0180.04
[42] Kac, M., Toeplitz matrices, translation kernels, and a related problem in probability theory, Duke Math. J., 21, 501-509 (1954) · Zbl 0056.10201 · doi:10.1215/s0012-7094-54-02149-3
[43] Forrester, P. J.; Pisani, C., The hole probability in log-gas and random matrix systems, Nucl. Phys. B, 374, 720-740 (1992) · Zbl 0992.82504 · doi:10.1016/0550-3213(92)90406-2
[44] Forrester, P. J., Log-gases, random matrices and the Fisher-Hartwig conjecture, J. Phys. A: Math. Gen., 26, 1179-1191 (1993) · Zbl 0772.60098 · doi:10.1088/0305-4470/26/5/035
[45] Lenard, A., One‐dimensional impenetrable bosons in thermal equilibrium, J. Math. Phys., 7, 1268-1272 (1966) · doi:10.1063/1.1705029
[46] Liechty, K.; Wang, D., Asymptotics of free fermions in a quadratic well at finite temperature and the Moshe-Neuberger-Shapiro random matrix model, Ann. Inst. H. Poincaré Probab. Stat., 56, 1072-1098 (2020) · Zbl 1447.82014 · doi:10.1214/19-aihp994
[47] Moshe, M.; Neuberger, H.; Shapiro, B., Generalized ensemble of random matrices, Phys. Rev. Lett., 73, 1497-1500 (1994) · Zbl 1020.82580 · doi:10.1103/physrevlett.73.1497
[48] Garcia-Garcia, A. M.; Verbaarschot, J. J M., Critical statistics in quantum chaos and Calogero-Sutherland model at finite temperature, Phys. Rev. E, 67 (2003) · doi:10.1103/physreve.67.046104
[49] Johansson, K., From gumbel to Tracy-Widom, Probab. Theor. Relat. Fields, 138, 75-112 (2007) · Zbl 1116.60020 · doi:10.1007/s00440-006-0012-7
[50] Dean, D. S.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Non-interacting fermions at finite temperature in a d-dimensional trap: universal correlations, Phys. Rev. A, 94 (2016) · doi:10.1103/physreva.94.063622
[51] Its, A. R.; Izergin, A. G.; Korepin, V. E., Temperature correlators of the impenetrable Bose gas as an integrable system, Commun. Math. Phys., 129, 205-222 (1990) · Zbl 0698.60094 · doi:10.1007/bf02096786
[52] Its, A. R.; Izergin, A. G.; Korepin, V. E.; Slavnov, N. A., Differential equations for quantum correlation functions, Int. J. Mod. Phys. B, 04, 1003-1037 (1990) · Zbl 0719.35091 · doi:10.1142/s0217979290000504
[53] Jimbo, M.; Miwa, T.; Môri, Y.; Sato, M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica D, 1, 80-158 (1980) · Zbl 1194.82007 · doi:10.1016/0167-2789(80)90006-8
[54] Aitken, A. C., Determinants and Matrices (1956), Edinburgh: Oliver and Boyd, Edinburgh · Zbl 0022.10005
[55] Pechukas, P., Distribution of energy eigenvalues in the irregular spectrum, Phys. Rev. Lett., 51, 943-946 (1983) · doi:10.1103/physrevlett.51.943
[56] Yukawa, T., Lax form of the quantum mechanical eigenvalue problem, Phys. Lett. A, 116, 227-230 (1986) · doi:10.1016/0375-9601(86)90138-6
[57] Haake, F., Quantum Signatures of Chaos (1992), Berlin: Springer, Berlin
[58] Forrester, P. J.; Jancovici, B.; Téllez, G., Universality in some classical Coulomb systems of restricted dimension, J. Stat. Phys., 84, 359-378 (1996) · Zbl 1081.82540 · doi:10.1007/bf02179647
[59] Widom, H., A theorem on translation kernels in \(n\) dimensions, Trans. Am. Math. Soc., 94, 170 (1960) · Zbl 0093.11501 · doi:10.1090/s0002-9947-1960-0110925-1
[60] Gouraud, G.; Le Doussal, P.; Schehr, G., Hole probability for noninteracting fermions in a d-dimensional trap (2021)
[61] Grobe, R.; Haake, F.; Sommers, H-J, Quantum distinction of regular and chaotic dissipative motion, Phys. Rev. Lett., 61, 1899 (1988) · doi:10.1103/physrevlett.61.1899
[62] Forrester, P. J., Some statistical properties of the eigenvalues of complex random matrices, Phys. Lett. A, 169, 21-24 (1992) · doi:10.1016/0375-9601(92)90798-q
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.