×

Asymptotically holomorphic theory for symplectic orbifolds. (English) Zbl 1519.53068

A landmark contribution by S. K. Donaldson [J. Differ. Geom. 44, No. 4, 666–705 (1996; Zbl 0883.53032)] aimed at constructing codimension-2 symplectic submanifolds with prescribed cohomology class pointed out the concept of asymptotically holomorphic sections of a complex line bundle, subject to a certain transversality condition. The article under review explores Donaldson’s technique in the context of symplectic orbifolds.
On a compact symplectic orbifold such that the symplectic form defines an integer cohomology class, the authors prove that there exist sections of large tensor powers of the prequantizable line bundle such that their zero sets are symplectic suborbifolds. Analogs of the Lefschetz hyperplane theorem for these suborbifolds are derived in mid-dimension. Also the hard Lefschetz and formality properties of these submanifolds are studied.
The contribution aligns with a vibrant array of recent discoveries, some due to the authors, in symplectic geometry.

MSC:

53D35 Global theory of symplectic and contact manifolds
57R17 Symplectic and contact topology in high or arbitrary dimension
32L05 Holomorphic bundles and generalizations

Citations:

Zbl 0883.53032

References:

[1] Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics, vol. 171. Cambridge University Press, Cambridge (2007) · Zbl 1157.57001
[2] Amorós, J.; Muñoz, V.; Presas, F., Generic behavior of asymptotically holomorphic Lefschetz pencils, J. Symplectic Geom., 2, 3, 377-392 (2004) · Zbl 1078.53085 · doi:10.4310/JSG.2004.v2.n3.a4
[3] Auroux, D., Asymptotically holomorphic families of symplectic submanifolds, Geom. Funct. Anal., 7, 6, 971-995 (1997) · Zbl 0912.53020 · doi:10.1007/s000390050033
[4] Auroux, D., Symplectic 4-manifolds as branched coverings of \(\textbf{CP}^2\), Invent. Math., 139, 3, 551-602 (2000) · Zbl 1080.53084 · doi:10.1007/s002220050019
[5] Auroux, D., Symplectic maps to projective spaces and symplectic invariants, Turk. J. Math., 25, 1, 1-42 (2001) · Zbl 1008.53068
[6] Auroux, D., A remark about Donaldson’s construction of symplectic submanifolds, J. Symplectic Geom., 1, 3, 647-658 (2002) · Zbl 1171.53343 · doi:10.4310/JSG.2001.v1.n3.a4
[7] Auroux, D.; Gayet, D.; Mohsen, J-P, Symplectic hypersurfaces in the complement of an isotropic submanifold, Math. Ann., 321, 4, 739-754 (2001) · Zbl 1005.53049 · doi:10.1007/s002080100248
[8] Auroux, D.; Donaldson, S.; Katzarkov, L., Singular Lefschetz pencils, Geom. Topol., 9, 1043-1114 (2005) · Zbl 1077.53069 · doi:10.2140/gt.2005.9.1043
[9] Auroux, D.; Muñoz, V.; Presas, F., Lagrangian submanifolds and Lefschetz pencils, J. Symplectic Geom., 3, 2, 171-219 (2005) · Zbl 1093.53085 · doi:10.4310/JSG.2005.v3.n2.a2
[10] Bazzoni, G., Biswas, I., Fernández, M., Muñoz, V., Tralle, A.: Homotopic properties of Kähler orbifolds. In: Chiossi, S., Fino, A., Musso, E., Podesta, F., Vezzoni, L. (eds.) Special Metrics and Group Actions in Geometry, Springer INdAM Series, vol. 23, pp. 23-57. Springer, New York (2017) · Zbl 1411.53053
[11] Borzellino, J.; Brunsden, V., On the notions of suborbifold and orbifold embedding, Algebr. Geom. Topol., 15, 5, 2789-2803 (2015) · Zbl 1330.57039 · doi:10.2140/agt.2015.15.2789
[12] Boutet de Monvel, L., Hypoelliptic operators with double characteristics and related pseudo-differential operators, Commun. Pure Appl. Math., 27, 585-639 (1974) · Zbl 0294.35020 · doi:10.1002/cpa.3160270502
[13] Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators, Annals of Mathematics Studies, vol. 99. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1981) · Zbl 0469.47021
[14] Boyer, C.; Galicki, K., Sasakian Geometry. Oxford Mathematical Monographs (2008), Oxford: Oxford University Press, Oxford · Zbl 1155.53002
[15] Calvo, O.; Muñoz, V.; Presas, F., Codimension one symplectic foliations, Rev. Mat. Iberoam., 21, 1, 25-46 (2005) · Zbl 1083.53081 · doi:10.4171/RMI/413
[16] Campana, F., Quotients résolubles ou nilpotents des groupes de kähler orbifoldes, Manuscr. Math., 135, 117-150 (2011) · Zbl 1217.32010 · doi:10.1007/s00229-010-0413-x
[17] Candelas, P.; de la Ossa, X.; Green, P.; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359, 1, 21-74 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[18] Cavalcanti, G.; Fernández, M.; Muñoz, V., Symplectic resolutions, Lefschetz property and formality, Adv. Math., 218, 2, 576-599 (2008) · Zbl 1142.53070 · doi:10.1016/j.aim.2008.01.012
[19] Chen, W., On a notion of maps between orbifolds. I. Function spaces, Commun. Contemp. Math., 8, 5, 569-620 (2006) · Zbl 1108.22003 · doi:10.1142/S0219199706002246
[20] Chen, W., On a notion of maps between orbifolds. II. Homotopy and CW-complex, Commun. Contemp. Math., 8, 6, 763-821 (2006) · Zbl 1108.22002 · doi:10.1142/S0219199706002283
[21] Chen, W., Resolving symplectic orbifolds with applications to finite group actions, J. Gökova Geom. Topol., 12, 1-39 (2018) · Zbl 1479.57049
[22] Chen, W., Ruan, Y.: Orbifold Gromov-Witten theory. In: Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, pp. 25-85. Amer. Math. Soc., Providence (2002) · Zbl 1091.53058
[23] Cho, C-H; Poddar, M., Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric orbifolds, J. Differ. Geom., 98, 1, 21-116 (2014) · Zbl 1300.53077
[24] Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and back, American Mathematical Society Colloquium Publications, vol. 59. American Mathematical Society, Providence (2012). Symplectic geometry of affine complex manifolds · Zbl 1262.32026
[25] Cristofaro-Gardiner, D., Humilière, V., Mak, C.Y., Seyfaddini, S., Smith, I.: Quantitative Heegaard Floer cohomology and the Calabi invariant, arXiv e-prints. arXiv:2105.11026 (2021) · Zbl 1508.53090
[26] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D., Real homotopy theory of Kähler manifolds, Invent. Math., 29, 3, 245-274 (1975) · Zbl 0312.55011 · doi:10.1007/BF01389853
[27] Donaldson, S., Symplectic submanifolds and almost-complex geometry, J. Differ. Geom., 44, 4, 666-705 (1996) · Zbl 0883.53032
[28] Donaldson, S., Lefschetz pencils on symplectic manifolds, J. Differ. Geom., 53, 2, 205-236 (1999) · Zbl 1040.53094
[29] Fernández, M.; Muñoz, V., Formality of Donaldson submanifolds, Math. Z., 250, 1, 149-175 (2005) · Zbl 1071.57024 · doi:10.1007/s00209-004-0747-8
[30] Fernández, M.; Muñoz, V., An 8-dimensional nonformal, simply connected, symplectic manifold, Ann. Math. (2), 167, 3, 1045-1054 (2008) · Zbl 1173.57012 · doi:10.4007/annals.2008.167.1045
[31] Gironella, F., Zhou, Z.: Exact orbifold fillings of contact manifolds. arXiv preprint arXiv:2108.12247 (2021)
[32] Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures. In: Proceedings of the International Congress of Mathematicians, vol. II (Beijing, 2002), pp. 405-414. Higher Ed. Press, Beijing (2002) · Zbl 1015.53049
[33] Giroux, E., Remarks on Donaldson’s symplectic submanifolds, Pure Appl. Math. Q., 13, 3, 369-388 (2017) · Zbl 1403.53071 · doi:10.4310/PAMQ.2017.v13.n3.a1
[34] Giroux, E.; Pardon, J., Existence of Lefschetz fibrations on Stein and Weinstein domains, Geom. Topol., 21, 2, 963-997 (2017) · Zbl 1372.32035 · doi:10.2140/gt.2017.21.963
[35] Griffiths, P., Morgan, J.: Rational homotopy theory and differential forms, Progress in Mathematics, vol. 16, 2nd edn. Springer, New York (2013) · Zbl 1281.55002
[36] Halperin, S.: Lectures on minimal models. Mém. Soc. Math. France (N.S.), 9-10, 261 (1983) · Zbl 0536.55003
[37] Hepworth, R., Morse inequalities for orbifold cohomology, Algebr. Geom. Topol., 9, 2, 1105-1175 (2009) · Zbl 1175.55004 · doi:10.2140/agt.2009.9.1105
[38] Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 72. Springer, Cham (2021) · Zbl 1479.58002
[39] Ibort, A.; Martínez-Torres, D., Approximately holomorphic geometry and estimated transversality on 2-calibrated manifolds, C. R. Math. Acad. Sci. Paris, 338, 9, 709-712 (2004) · Zbl 1057.53043 · doi:10.1016/j.crma.2004.03.003
[40] Ibort, A.; Martínez-Torres, D.; Presas, F., On the construction of contact submanifolds with prescribed topology, J. Differ. Geom., 56, 2, 235-283 (2000) · Zbl 1034.53088
[41] Lupercio, E.; Uribe, B., Gerbes over orbifolds and twisted \(K\)-theory, Commun. Math. Phys., 245, 3, 449-489 (2004) · Zbl 1068.53034 · doi:10.1007/s00220-003-1035-x
[42] Lupton, G., Intrinsic formality and certain types of algebras, Trans. Am. Math. Soc., 319, 1, 257-283 (1990) · Zbl 0697.55015 · doi:10.1090/S0002-9947-1990-1005081-0
[43] Mak, CY; Smith, I., Non-displaceable Lagrangian links in four-manifolds, Geom. Funct. Anal., 31, 2, 438-481 (2021) · Zbl 1479.57068 · doi:10.1007/s00039-021-00562-8
[44] Martín-Merchán, L.; Rojo, J., Resolution of 4-dimensional symplectic orbifolds, Ann. Glob. Anal. Geom., 59, 385-416 (2021) · Zbl 1476.57029 · doi:10.1007/s10455-021-09753-w
[45] Martínez Torres, D., Del Pino, Á., Presas, F.: The foliated Lefschetz hyperplane theorem. Nagoya Math. J. 231, 115-127 (2018) · Zbl 1416.57011
[46] McDuff, D.; Salamon, D., Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics (2017), Oxford: Oxford University Press, Oxford · doi:10.1093/oso/9780198794899.001.0001
[47] Moerdijk, I.: Orbifolds as groupoids: an introduction. In: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., vol. 310, pp. 205-222. Amer. Math. Soc., Providence (2002) · Zbl 1041.58009
[48] Moerdijk, I., Pronk, D.: Orbifolds, sheaves and groupoids. \(K\)-Theory12(1), 3-21 (1997) · Zbl 0883.22005
[49] Mohsen, J-P, Transversalité quantitative en géométrie symplectique: sous-variétés et hypersurfaces, Ann. Fac. Sci. Toulouse Math. (6), 28, 4, 655-706 (2019) · Zbl 1434.32019 · doi:10.5802/afst.1612
[50] Muñoz, V.; Presas, F.; Sols, I., Almost holomorphic embeddings in Grassmannians with applications to singular symplectic submanifolds, J. Reine Angew. Math., 547, 149-189 (2002) · Zbl 1004.53042
[51] Muñoz, V.; Rojo, JA, Symplectic resolution of orbifolds with homogeneous isotropy, Geom. Dedicata, 204, 339-363 (2020) · Zbl 1510.53090 · doi:10.1007/s10711-019-00459-9
[52] Niederkrüger, K.; Pasquotto, F., Resolution of symplectic cyclic orbifold singularities, J. Symplectic Geom., 7, 337-355 (2009) · Zbl 1218.53089 · doi:10.4310/JSG.2009.v7.n3.a4
[53] Polterovich, L., Shelukhin, E.: Lagrangian configurations and Hamiltonian maps. arXiv e-prints. arXiv:2102.06118 (2021)
[54] Presas, F., Lefschetz type pencils on contact manifolds, Asian J. Math., 6, 2, 277-301 (2002) · Zbl 1101.53055 · doi:10.4310/AJM.2002.v6.n2.a4
[55] Presas, F.: Geometric decompositions of almost contact manifolds. In: Contact and Symplectic Topology, Bolyai Soc. Math. Stud., vol. 26, pp. 137-172. János Bolyai Math. Soc., Budapest (2014) · Zbl 1332.53098
[56] Sena-Dias, R., Estimated transversality and rational maps, J. Symplectic Geom., 4, 2, 199-236 (2006) · Zbl 1117.53062 · doi:10.4310/JSG.2006.v4.n2.a4
[57] Shiffman, B.; Zelditch, S., Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math., 544, 181-222 (2002) · Zbl 1007.53058
[58] Tralle, A., Oprea, J.: Symplectic manifolds with no Kähler structure. Lecture Notes in Mathematics, vol. 1661. Springer, Berlin (1997) · Zbl 0891.53001
[59] Yomdin, Y., The geometry of critical and near-critical values of differentiable mappings, Math. Ann., 264, 4, 495-515 (1983) · Zbl 0507.57019 · doi:10.1007/BF01456957
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.