×

Cut singularity of compressible Stokes flow. (English) Zbl 1519.35243

Summary: In this paper we study the cut singularity governed by a compressible Stokes system. The cut is a non-Lipshitz boundary. The divergence of the leading corner singularity vector, which has the singular exponent 1/2, has different trace values on either side of cut. In the consequence the pressure solution of the continuity equation must have a jump across the streamline emanating from the cut tip. We establish a piecewise regularity of the solution by the corner singularity and the contact singular function.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76F50 Compressibility effects in turbulence
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Adams, RA, Sobolev Spaces (1975), New York: Academic Press, New York · Zbl 0314.46030
[2] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Boston, London: Pitman Advanced Publishing Program, Boston, London · Zbl 0695.35060
[3] Han, JH; Kweon, JR; Park, M., Interior discontinuity for a stationary compressible Stokes system with inflow datum, Comput. Math. Appl., 74, 2321-2329 (2017) · Zbl 1398.35169 · doi:10.1016/j.camwa.2017.07.002
[4] Han, JH; Kweon, JR, Interior jump and contact singularity for compressible flows with inflow jump datum, J. Diff. Equ., 283, 37-70 (2021) · Zbl 1460.35257 · doi:10.1016/j.jde.2021.02.039
[5] Kozlov, V.A., Ma \(\acute{z}\) ya, V.G., Rossmann, J,: Spectral Problems Associated Corner singularities of Solutions to Elliptic Equations. AMS, Washington (2001) · Zbl 0965.35003
[6] Kweon, JR; Kellogg, RB, Compressible stokes problem on nonconvex polygonal domains, J. Diff. Equ., 176, 290-314 (2001) · Zbl 0993.35073 · doi:10.1006/jdeq.2000.3964
[7] Kweon, JR; Kellogg, RB, Regularity of Solutions to the Navier-Stokes equations for compressible Barotropic flows on a Polygon, Arch. Rational Mech. Anal., 163, 35-64 (2002) · Zbl 1002.35095 · doi:10.1007/s002050200191
[8] Kweon, JR; Kellogg, KB, Regularity of solutions to the Navier-stokes equations for compressible flows on a polygon, SIAM J. Math. Anal., 35, 1451-1485 (2004) · Zbl 1064.35137 · doi:10.1137/S0036141002418066
[9] Kweon, JR; Kellogg, RB, The Pressure Singularity for Compressible Stokes Flows in a Concave Polygon, J. Math. Fluid Mech., 11, 1-21 (2009) · Zbl 1162.76379 · doi:10.1007/s00021-007-0245-y
[10] Kweon, JR, A jump discontinuity of compressible viscous flows grazing a non-convex corner, J. Math. Pures Appl., 100, 410-432 (2013) · Zbl 1284.35296 · doi:10.1016/j.matpur.2013.01.007
[11] Kweon, J.R., Lee, T.Y.: Corner direction flows of a compressible Stokes system, submitted, (2022)
[12] Kwon, OS; Kweon, JR, For the vorticity-veloticy-pressure form of the Navier-Stokes equations on a bounded plane domain with corners, nonlinear, Analysis, 75, 2936-2956 (2012) · Zbl 1236.35108
[13] Kwon, OS; Kweon, JR, Interior jump and regularity of compressible viscous Navier-stokes flows through a cut, SIAM J. Math. Anal., 49, 3, 1982-2008 (2017) · Zbl 1377.35215 · doi:10.1137/15M1042826
[14] Navier, C., Mémoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Paris., 6, 389-416 (1823)
[15] Rowley, CW; Colonius, T.; Basu, AJ, On self-sustained oscillations in two dimensional compressible flow over rectangular cavities, J. Fluid Mech., 455, 315-346 (2002) · Zbl 1147.76607 · doi:10.1017/S0022112001007534
[16] Rowley, CW; Williams, DR, Dynamics and control of high-Reynolds-number flow over open cavities, Annu. Rev. Fluid Mech., 38, 251-276 (2006) · Zbl 1101.76019 · doi:10.1146/annurev.fluid.38.050304.092057
[17] Shankar, PN; Deshpande, MD, Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., 32, 93-136 (2000) · Zbl 0988.76006 · doi:10.1146/annurev.fluid.32.1.93
[18] Weinbaum, S., On the singular points in the laminar two-dimensional near wake flow field, J. Fluid Mech., 33, 38-63 (1968) · Zbl 0159.27804 · doi:10.1017/S002211206800234X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.