×

Projections of semilocal rings. (English. Russian original) Zbl 1519.16011

Algebra Logic 61, No. 2, 125-138 (2022); translation from Algebra Logika 61, No. 2, 180-200 (2022).
Summary: Associative rings are considered. By a lattice isomorphism (or projection) of a ring \(R\) onto a ring \(R^\phi\) we mean an isomorphism \(\phi\) of the subring lattice \(L(R)\) of a ring \(R\) onto the subring lattice \(L(R^\phi )\) of a ring \(R^\phi \). Let \(M_n(GF (p^k))\) be the ring of all square matrices of order \(n\) over a finite field \(GF(p^k)\), where \(n\) and \(k\) are natural numbers, \(p\) is a prime. A finite ring \(R\) with identity is called a semilocal (primary) ring if \(R/\operatorname{Rad} R \cong M_n (GF (p^k))\). It is known that a finite ring \(R\) with identity is a semilocal ring iff \(R \cong M_n(K)\) and \(K\) is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if \(\phi\) is a projection of a ring \(R = M_n(K)\), where \(K\) is an arbitrary finite local ring, onto a ring \(R^\phi \), then \(R^\phi = M_n(K\)’), in which case \(K\)’ is a local ring lattice-isomorphic to the ring \(K\). We thus prove that the class of semilocal rings is lattice definable.

MSC:

16L30 Noncommutative local and semilocal rings, perfect rings
Full Text: DOI

References:

[1] McDonald, BR, Finite Rings with Identity (1974), New York: Dekker, New York · Zbl 0294.16012
[2] Elizarov, VP, Finite Rings (2006), Moscow: Gelios, Moscow · Zbl 1157.15304
[3] Barnes, DW, Lattice isomorphisms of associative algebras, J. Aust. Math. Soc., 6, 1, 106-121 (1966) · Zbl 0141.03102 · doi:10.1017/S1446788700004055
[4] Korobkov, SS, Lattice definability of certain matrix rings, Mat. Sb., 208, 1, 97-110 (2017) · Zbl 1391.16020
[5] Korobkov, SS, Projections of finite nonnilpotent rings, Algebra and Logic, 58, 1, 48-58 (2019) · Zbl 1428.16021 · doi:10.1007/s10469-019-09524-4
[6] Korobkov, SS, Lattice isomorphisms of finite local rings, Algebra and Logic, 59, 1, 59-70 (2020) · Zbl 1471.16034 · doi:10.1007/s10469-020-09579-8
[7] S. S. Korobkov, “Periodic rings with subring lattices decomposable into a direct product of subring lattices,” in Studies of Algebraic Systems vs. Properties of Their Subsystems [in Russian], Yekaterinburg (1998), pp. 48-59.
[8] S. S. Korobkov, “Lattice isomorphisms of finite rings without nilpotent elements,” Izv. Ural. Gos. Univ., No. 22, Mat. Mekh. Komp. Nauki, Iss. 4, 81-93 (2002). · Zbl 1057.16016
[9] Korobkov, SS, Projections of Galois rings, Algebra and Logic, 54, 1, 10-22 (2015) · Zbl 1332.16013 · doi:10.1007/s10469-015-9318-9
[10] S. S. Korobkov, “Finite rings with exactly two maximal subrings,” Izv. Vyssh. Uch. Zav., Mat., No. 6, 55-62 (2011). · Zbl 1255.16020
[11] Jacobson, N., Structure of Rings (1956), Providence, R.I.: Am. Math. Soc, Providence, R.I. · Zbl 0073.02002 · doi:10.1090/coll/037
[12] Korobkov, SS, Projections of finite one-generated rings with identity, Algebra and Logic, 55, 2, 128-145 (2016) · Zbl 1378.16032 · doi:10.1007/s10469-016-9383-8
[13] Korobkov, SS, Projections of finite commutative rings with identity, Algebra and Logic, 57, 3, 186-200 (2018) · Zbl 1404.16029 · doi:10.1007/s10469-018-9492-7
[14] Barnes, DW, On the radical of a ring with minimum condition, J. Aust. Math. Soc., 5, 234-236 (1965) · Zbl 0134.03801 · doi:10.1017/S1446788700026793
[15] S. S. Korobkov, “Projections of periodic nil-rings,” Izv. Vyssh. Uch. Zav., Mat., No. 7, 30-38 (1980). · Zbl 0448.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.