×

Length function and simultaneous triangularization of matrix pairs. (English. Russian original) Zbl 1519.15011

J. Math. Sci., New York 272, No. 4, 566-573 (2023); translation from Zap. Nauchn. Semin. POMI 514, 126-137 (2022).
Summary: The paper interrelates the simultaneous triangularization problem for matrix pairs with the Paz problem and known results on the length of the matrix algebra. The length function is applied to the Al’pin-Koreshkov algorithm, and it is demonstrated how its multiplicative complexity can be reduced. An asymptotically superior procedure for verifying the simultaneous triangularizability of a pair of complex matrices is provided. The procedure is based on results on the lengths of upper triangular matrix algebras. Also the definition of the hereditary length of an algebra is introduced, and the problem of computing the hereditary lengths of matrix algebras is discussed.

MSC:

15A20 Diagonalization, Jordan forms
15A30 Algebraic systems of matrices
Full Text: DOI

References:

[1] J. Alman and V. Vassilevska Williams, “A refined laser method and faster matrix multiplication,” in: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA) (2021), pp. 522-539. · Zbl 07788370
[2] Alpin, YA; Koreshkov, NA, On simultaneous triangularizability of matrices, Mat. Zametki, 68, 5, 648-652 (2000) · Zbl 0993.15012
[3] Bourgeois, G., Pairs of matrices, one of which commutes with their commutator, Electron. J. Linear Algebra, 22, 593-597 (2011) · Zbl 1223.15022 · doi:10.13001/1081-3810.1460
[4] Bourgeois, G., Common invariant subspace and commuting matrices, Linear Algebra Appl., 438, 7, 3030-3038 (2013) · Zbl 1266.15024 · doi:10.1016/j.laa.2012.11.034
[5] Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau, “Fast matrix rank algorithms and applications,” J. Assoc. Comp. Mach., 60, No. 5, Art. 31, 1-25 (2013). · Zbl 1281.90039
[6] Drazin, MP; Dungey, JW; Gruenberg, KW, Some theorems on commutative matrices, J. London Math. Soc., 26, 221-228 (1951) · Zbl 0043.25201 · doi:10.1112/jlms/s1-26.3.221
[7] Guterman, AE; Laffey, T.; Markova, OV; Šmigoc, H., A resolution of Paz’s conjecture in the presence of a nonderogatory matrix, Linear Algebra Appl., 543, 234-250 (2018) · Zbl 1382.15027 · doi:10.1016/j.laa.2018.01.002
[8] Guterman, AE; Markova, OV; Mehrmann, V., Lengths of quasi-commutative pairs of matrices, Linear Algebra Appl., 498, 450-470 (2016) · Zbl 1334.15050 · doi:10.1016/j.laa.2015.11.028
[9] Laffey, TJ, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl., 84, 123-138 (1986) · Zbl 0609.15004 · doi:10.1016/0024-3795(86)90311-3
[10] Lambrou, MS; Longstaff, WE, On the lengths of pairs of complex matrices of size six, Bull. Austral. Math. Soc., 80, 2, 177-201 (2009) · Zbl 1184.15014 · doi:10.1017/S0004972709000112
[11] Longstaff, WE, Irreducible families of complex matrices containing a rank-one matrix, Bull. Austral. Math. Soc., 102, 2, 226-236 (2020) · Zbl 1447.15012 · doi:10.1017/S0004972719001448
[12] Longstaff, WE; Niemeyer, AC; Panaia, O., On the lengths of pairs of complex matrices of size at most five, Bull. Austral. Math. Soc., 73, 3, 461-472 (2006) · Zbl 1102.15012 · doi:10.1017/S0004972700035462
[13] Longstaff, WE; Rosenthal, P., On the lengths of irreducible pairs of complex matrices, Proc. Amer. Math. Soc., 139, 11, 3769-3777 (2011) · Zbl 1237.15014 · doi:10.1090/S0002-9939-2011-11149-3
[14] McCoy, NH, On the characteristic roots of matrix polynomials, Bull. Amer. Math. Soc., 42, 592-600 (1936) · Zbl 0015.05501 · doi:10.1090/S0002-9904-1936-06372-X
[15] Markova, OV, Length computation of matrix subalgebras of special type, Fundam. Prikl. Mat., 13, 4, 165-197 (2007)
[16] Markova, OV, The length function and matrix algebras, Fundam. Prikl. Mat., 17, 6, 65-173 (2012)
[17] O. V. Markova and D. Yu. Novochadov, “Generating systems of the full matrix algebra that contain nonderogatory matrices,” Zap. Nauchn. Semin. POMI, 504, 157-171 (2021); English transl., J. Math. Sci., 262, No. 1, 99-107 (2022). · Zbl 1491.15024
[18] Pappacena, CJ, An upper bound for the length of a finite-dimensional algebra, J. Algebra, 197, 535-545 (1997) · Zbl 0888.16008 · doi:10.1006/jabr.1997.7140
[19] Paz, A., An application of the Cayley-Hamilton theorem to matrix polynomials in several variables, Linear Multilinear Algebra, 15, 161-170 (1984) · Zbl 0536.15007 · doi:10.1080/03081088408817585
[20] Radjavi, H.; Rosenthal, P., Simultaneous Triangularization (2000), New York: Springer, New York · Zbl 0981.15007 · doi:10.1007/978-1-4612-1200-3
[21] Shitov, Y., An improved bound for the lengths of matrix algebras, Algebra Number Theory, 13, 6, 1501-1507 (2019) · Zbl 1419.15018 · doi:10.2140/ant.2019.13.1501
[22] Spencer, AJM; Rivlin, RS, The theory of matrix polynomials and its applications to the mechanics of isotropic continua, Arch. Ration. Mech. Anal., 2, 309-336 (1959) · Zbl 0095.25101 · doi:10.1007/BF00277933
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.