×

Second order symmetry operators for the massive Dirac equation. (English) Zbl 1518.83093

Summary: Employing the covariant language of two-spinors, we find what conditions a curved four-dimensional Lorentzian spacetime must satisfy for existence of a second order symmetry operator for the massive Dirac equation. The conditions are formulated as existence of a set of Killing spinors satisfying a set of covariant linear differential equations. Using these Killing spinors, we then state the most general form of such an operator. Partial results for the zeroth and first order are presented and interpreted as well. Computer algebra tools from the Mathematica package suite xAct were used for the calculations.

MSC:

83F05 Relativistic cosmology
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
81R25 Spinor and twistor methods applied to problems in quantum theory
70F05 Two-body problems
22E70 Applications of Lie groups to the sciences; explicit representations
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] Açık, O.; Ertem, U.; Önder, M.; Verçin, A., First-order symmetries of the Dirac equation in a curved background: a unified dynamical symmetry condition, Class. Quantum Grav., 26 (2009) · Zbl 1161.83384 · doi:10.1088/0264-9381/26/7/075001
[2] Aksteiner, SBäckdahl, T2021SymSpin: symmetric spinors(available at: www.xact.es/SymSpin)
[3] Aksteiner, S.; Bäckdahl, T., A space-time calculus based on symmetric 2-spinors (2022)
[4] Anco, S. C.; Pohjanpelto, J., Symmetries and currents of massless neutrino fields, electromagnetic and graviton fields, Symmetry in Physics (CRM Proceedings and Lecture Notes vol 34), 1-12 (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1055.81031 · doi:10.1090/crmp/034/01
[5] Andersson, L.; Bäckdahl, T.; Blue, P., Second order symmetry operators, Class. Quantum Grav., 31 (2014) · Zbl 1295.35022 · doi:10.1088/0264-9381/31/13/135015
[6] Andersson, L.; Bäckdahl, T.; Blue, P.; Daudé, T.; Häfner, D.; Nicolas, J-P E., Geometry of black hole spacetimes, Asymptotic Analysis in General Relativity (London Mathematical Society Lecture Note Series), 9-85 (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1416.83036 · doi:10.1017/9781108186612.002
[7] Andersson, L.; Blue, P., Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. Math., 182, 787-853 (2015) · Zbl 1373.35307 · doi:10.4007/annals.2015.182.3.1
[8] Bäckdahl, T2011-2021SymManipulator: symmetrized tensor expressions(available at: www.xact.es/SymManipulator)
[9] Benn, I. M.; Charlton, P., Dirac symmetry operators from conformal Killing-Yano tensors, Class. Quantum Grav., 14, 1037-42 (1997) · Zbl 0879.58079 · doi:10.1088/0264-9381/14/5/011
[10] Benn, I. M.; Kress, J. M., First-order Dirac symmetry operators, Class. Quantum Grav., 21, 427-31 (2003) · Zbl 1045.83046 · doi:10.1088/0264-9381/21/2/007
[11] Cariglia, M., Quantum mechanics of Yano tensors: Dirac equation in curved spacetime, Class. Quantum Grav., 21, 1051-77 (2004) · Zbl 1051.83009 · doi:10.1088/0264-9381/21/4/022
[12] Cariglia, M.; Krtouš, P.; Kubizňák, D., Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.024004
[13] Carter, B., Global structure of the Kerr family of gravitational fields, Phys. Rev., 174, 1559-71 (1968) · Zbl 0167.56301 · doi:10.1103/PhysRev.174.1559
[14] Fels, M.; Kamran, N., Non-factorizable separable systems and higher-order symmetries of the Dirac operator, Proc. R. Soc. A, 428, 229-49 (1990) · Zbl 0727.35115 · doi:10.1098/rspa.1990.0032
[15] Jacobsson, SBäckdahl, T2022Second order symmetry operators for the massive Dirac equation(available at: https://github.com/SimonKvantdator/symop-dirac)
[16] Kalnins, E. G.; Miller, W. Jr; Williams, G. C.; Chandrasekhar, S., Recent advances in the use of separation of variables methods in general relativity, Phil. Trans. R. Soc. A, 340, 337-52 (1992) · Zbl 0776.53050 · doi:10.1098/rsta.1992.0071
[17] Kamran, N.; McLenaghan, R. G., Symmetry operators for neutrino and Dirac fields on curved spacetime, Phys. Rev. D, 30, 357-62 (1984) · Zbl 0900.58052 · doi:10.1103/PhysRevD.30.357
[18] Michel, J-P; Radoux, F.; Šilhan, J., Second order symmetries of the conformal Laplacian, Symmetry Integr. Geom.: Methods Appl. (SIGMA), 10, 016 (2014) · Zbl 1288.58014 · doi:10.3842/SIGMA.2014.016
[19] Penrose, R.; Rindler, W., Spinors and Space-Time vol 1 (1987), Cambridge: Cambridge University Press, Cambridge · Zbl 0663.53013 · doi:10.1017/CBO9780511564048
[20] Penrose, R.; Rindler, W., Spinors and Space-Time (Cambridge Monographs on Mathematical Physics vol 2) (1988), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511524486
[21] Wald, R. M., General Relativity (1984), Chicago, IL: The University of Chicago Press, Chicago, IL · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.