×

A boundary-field formulation for elastodynamic scattering. (English) Zbl 1518.35586

The objective of the article is the study of the elastic fields that are obtained in an infinite medium after an elastic wave collides with an obstacle and becomes embedded in the medium. To this end, the authors apply a Boundary Field Equation method. This allows to formulate a Nonlocal Boundary Problem in the domain of the Laplace transform by using the equations inside and outside the obstacle.
The basic qualitative results are obtained later, such as the existence, uniqueness and stability of the solution of the Nonlocal Boundary Problem in suitable Sobolev spaces for two integral representations. Subsequently, these results are transferred to the time domain and the stability bounds are also transferred to this domain.
These results represent the starting point for a numerical discretization based on the Convolution Quadrature.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35A15 Variational methods applied to PDEs
35L05 Wave equation
45A05 Linear integral equations
74J05 Linear waves in solid mechanics
74J20 Wave scattering in solid mechanics
74B10 Linear elasticity with initial stresses
65D32 Numerical quadrature and cubature formulas
74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65R20 Numerical methods for integral equations

References:

[1] Adams, R. A.; Fournier, J. J.F., Sobolev spaces, Pure and Applied Mathematics (Amsterdam), xiv+305 (2003), Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1098.46001
[2] Ahner, J.; Hsiao, G. C., A Neumann series representation for solutions to boundary value problems in dynamic elasticity, Q. Appl. Math., 33, 73-80 (1975) · Zbl 0306.35035 · doi:10.1090/qam/449124
[3] Bamberger, A.; Duong, T. H., Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I, Math. Methods Appl. Sci., 8, 3, 405-435 (1986) · Zbl 0618.35069
[4] Banjai, L.; Lubich, D.; Sayas, F.-J., Stable numerical coupling of exterior and interior problems for the wave equation, Numer. Math., 129, 611-646 (2015) · Zbl 1314.65122 · doi:10.1007/s00211-014-0650-0
[5] Bao, Y.; Varatharajulu, V., Huygen’s principle, radiation conditions, and integral formulas for the elastic waves, J. Acoust. Soc. Am., 59, 6, 1361-1371 (1976) · Zbl 0348.73018 · doi:10.1121/1.381022
[6] Brown, T. S.; Sánchez-Vizuet, T.; Sayas, F.-J., Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid, ESAIM: Math. Model. Numer. Anal., 52, 2, 423-455 (2018) · Zbl 06966729 · doi:10.1051/m2an/2017045
[7] Cruse, T.; Rizzo, F. J., A direct formulation and numerical solution of the general transient elastodynamic problem I, J. Math. Anal. Appl., 22, 244-259 (1968) · Zbl 0167.16301 · doi:10.1016/0022-247X(68)90171-6
[8] Dassios, G.; Kleinman, R., Low Frequency Scattering (2000), Oxford: Oxford Science, Oxford · Zbl 0982.76002
[9] Dassios, G.; Rigou, Z., On the density of traction traces in scattering of elastic waves, SIAM J. Appl. Math., 53, 1, 141-153 (1993) · Zbl 0771.35070 · doi:10.1137/0153009
[10] Domínguez, V.; Sánchez-Vizuet, T.; Sayas, F.-J., A fully discrete Calderón calculus for the two-dimensional elastic wave equation, Comput. Math. Appl., 69, 7, 620-635 (2015) · Zbl 1443.65402 · doi:10.1016/j.camwa.2015.01.016
[11] Hassell, M.; Sayas, F.-J., Convolution quadrature for wave simulations, Numerical Simulation in Physics and Engineering, 71-159 (2016), Cham: Springer, Cham · Zbl 1351.65102 · doi:10.1007/978-3-319-32146-2_2
[12] Hsiao, G. C.; Sánchez-Vizuet, T., Time-dependent wave-structure interaction revisited: thermo-piezoelectric scatterers, Fluids, 6, 101, 1-19 (2021) · doi:10.3390/fluids6030101
[13] Hsiao, G. C.; Wendland, W. L., On the propagation of acoustic waves in a thermo-electro-magneto-elastic solid, Appl. Anal., 101, 3785-3803 (2021) · Zbl 1497.35141 · doi:10.1080/00036811.2021.1986027
[14] Hsiao, G. C.; Wendland, W. L., Boundary Integral Equations (2021), Berlin: Springer, Berlin · Zbl 1477.65007 · doi:10.1007/978-3-030-71127-6
[15] Hsiao, G. C.; Sayas, F.-J.; Weinacht, R. J., Time-dependent fluid-structure interaction, Math. Methods Appl. Sci., 40, 486-500 (2015) · Zbl 1364.35221 · doi:10.1137/14099173x
[16] Hsiao, G. C.; Sánchez-Vizuet, T.; Sayas, F., Boundary and coupled boundary-finite element methods for transient wave-structure interaction, IMA J. Numer. Anal., 37, 1, 237-265 (2016) · Zbl 1433.74114 · doi:10.1093/imanum/drw009
[17] Hsiao, G. C.; Sánchez-Vizuet, T.; Sayas, F.-J., A time-dependent wave-thermoelastic solid interaction, IMA J. Numer. Anal., 39, 924-956 (2019) · Zbl 1466.65109 · doi:10.1093/imanum/dry016
[18] Kielhorn, L.; Schanz, M., Convolution quadrature method-based symmetric Galerkin boundary element method for 3-D elastodynamics, Int. J. Numer. Methods Eng., 76, 1724-1746 (2008) · Zbl 1195.74239 · doi:10.1002/nme.2381
[19] Kupradze, V., Dynamical Problems in Elasticity (1963), Amsterdam: North-Holland, Amsterdam
[20] Kupradze, V. D.; Gegelia, T. G.; Basheleĭshvili, M. O.; Burchuladze, T. V.; Kupradze, V. D., Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Series in Applied Mathematics and Mechanics, xix+929 (1979), Amsterdam: North-Holland, Amsterdam · Zbl 0406.73001
[21] Laliena, A. R.; Sayas, F.-J., Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math., 112, 4, 637-678 (2009) · Zbl 1178.65117 · doi:10.1007/s00211-009-0220-z
[22] Lubich, C., Convolution quadrature and discretized operational calculus. I, Numer. Math., 52, 2, 129-145 (1988) · Zbl 0637.65016 · doi:10.1007/BF01398686
[23] Lubich, C., Convolution quadrature and discretized operational calculus. II, Numer. Math., 52, 4, 413-425 (1988) · Zbl 0643.65094 · doi:10.1007/BF01462237
[24] Lubich, C., On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 67, 3, 365-389 (1994) · Zbl 0795.65063 · doi:10.1007/s002110050033
[25] Rizzo, F.; Shippy, D.; Rezayat, M., A boundary integral equation method for radiation and scattering of elastic waves in three dimensions, Int. J. Numer. Methods Eng., 21, 115-129 (1985) · Zbl 0551.73035 · doi:10.1002/nme.1620210110
[26] Sayas, F.-J., Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map (2016), Cham: Springer, Cham · Zbl 1346.65047
[27] Sayas, F.-J.: Errata to: Retarded potentials and time domain boundary integral equations: a road-map. https://team-pancho.github.io/documents/ERRATA.pdf
[28] Tong, M. S.; Chew, W. C., The Nyström Method in Electromagnetics (2020), Singapore: Wiley, Singapore · doi:10.1002/9781119284857
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.