×

Robust stability of a nonlinear ODE-PDE system. (English) Zbl 1518.35064

Summary: This work studies stability and robustness of a nonlinear system given as an interconnection of an ODE and a parabolic PDE subjected to external disturbances entering through the boundary conditions of the parabolic equation. To this end we develop an approach for construction of a suitable coercive Lyapunov function as one of our main results. Based on this Lyapunov function, we establish well-posedness of the considered system and establish conditions that guarantee the input-to-state stable (ISS) property. ISS estimates are derived explicitly for the particular case of globally Lipschitz nonlinearities.

MSC:

35B35 Stability in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K58 Semilinear parabolic equations
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
93D09 Robust stability
93D20 Asymptotic stability in control theory

References:

[1] Ahmed-Ali, T., Karafyllis, I., Giri, F., Krstic, M., and Lamnabhi-Lagarrigue, F., Exponential stability analysis of sampled-data ODE-PDE systems and application to observer design, IEEE Trans. Automat. Control, 62 (2017), pp. 3091-3098. · Zbl 1369.93092
[2] anwani, A., Prieur, C., and Tarbouriech, S., Disturbance-to-State Stabilization and Quantized Control for Linear Hyperbolic Systems, doi:10.48550/arXiv.1703.00302, 2017.
[3] Babin, A. V. and Vishik, M. I., Attractors of Evolution Equations, , North-Holland Publishing, Amsterdam, 1992. · Zbl 0778.58002
[4] Daleckiĭ, J. L. and Kreĭn, M. G., Stability of Solutions of Differential Equations in Banach Space, translated from the Russian by Smith, S., , American Mathematical Society, Providence, RI, 1974. · Zbl 0286.34094
[5] Dashkovskiy, S., Kapustyan, O., and Schmid, J., A local input-to-state stability result w.r.t. attractors of nonlinear reaction-diffusion equations, Math. Control Signals Systems, 32 (2020), pp. 309-326. · Zbl 1455.93170
[6] Dashkovskiy, S., Kapustyan, O., and Slynko, V., Well-posedness and Robust Stability of a Nonlinear ODE-PDE System, arXiv:2103.15747, 2021.
[7] Dashkovskiy, S. and Narimanyan, A., Thermal plasma cutting. I. Modified mathematical model, Math. Model. Anal., 12 (2007), pp. 441-458. · Zbl 1137.80011
[8] Datko, R., Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3 (1972), pp. 428-445, doi:10.1137/0503042. · Zbl 0241.34071
[9] Efendiev, M. A., Otani, M., and Eberl, H. J., Mathematical analysis of a PDE-ODE coupled model of mitochondrial swelling with degenerate calcium ion diffusion, SIAM J. Math. Anal., 52 (2020), pp. 543-569, doi:10.1137/18M1227421. · Zbl 1429.35139
[10] Evans, L. C., Partial Differential Equations, 2nd ed., , American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[11] Fabre, C., Puel, J.-P., and Zuazua, E., Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), pp. 31-61. · Zbl 0818.93032
[12] Gantmacher, F. R., The Theory of Matrices, Vol. 1, Chelsea Publishing, New York, 1959. · Zbl 0085.01001
[13] Garavello, M., Goatin, P., Liard, T., and Piccoli, B., A multiscale model for traffic regulation via autonomous vehicles, J. Differential Equations, 269 (2020), pp. 6088-6124. · Zbl 1439.90025
[14] Henry, D., Geometric Theory of Semilinear Parabolic Equations, , Springer-Verlag, Berlin, 1981. · Zbl 0456.35001
[15] Hirsch, H. S. M. and Smith, H., Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Elsevier B. V., Amsterdam, 2005, pp. 239-357. · Zbl 1094.34003
[16] Jacob, B., Schwenninger, F. L., and Zwart, H., On continuity of solutions for parabolic control systems and input-to-state stability, J. Differential Equations, 266 (2019), pp. 6284-6306. · Zbl 1514.47118
[17] Kang, W. and Fridman, E., Boundary Control of Cascaded ODE-Heat Equations under Actuator Saturation, arxiv.org/abs/1608.03729, 2017. · Zbl 1373.93258
[18] Kang, W. and Fridman, E., Boundary control of delayed ODE-heat cascade under actuator saturation, Automatica J. IFAC, 83 (2017), pp. 252-261. · Zbl 1373.93258
[19] Karafyllis, I. and Krstic, M., Input-to-State Stability for PDEs, , Springer, Cham, 2019. · Zbl 1416.93004
[20] Kedyk, T. V., Invariant manifolds of hybrid quasimonotone extensions, Dokl. Akad. Nauk Ukrain. SSR, (1991), pp. 8-11, 179 (in Russian).
[21] Kedyk, T. V. and Obolenskiĭ, A. Y., On the stability with respect to two measures of hybrid quasimonotone extensions, Dokl Akad. Nauk Ukrain. SSR, (1991), pp. 80-82 (in Russian).
[22] Krstic, M., Compensating actuator and sensor dynamics governed by diffusion PDEs, Syst. Control Lett., 58 (2009), pp. 372-377. · Zbl 1159.93024
[23] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. · Zbl 0189.40603
[24] Liu, J.-J. and Guo, B.-Z., Robust tracking error feedback control for a one-dimensional Schrödinger equation, IEEE Trans. Automat. Control, 67 (2022), pp. 1120-1134. · Zbl 1537.93174
[25] Liu, Y., Guo, F., and He, X., Boundary control for an axially moving system with input restriction based on disturbance observers, IEEE Trans. Syst. Man Cybernet. Syst., 49 (2019), pp. 2242-2253.
[26] Martynyuk, A. A. and Slynko, V. I., On the stability of linear hybrid mechanical systems with a distributed component, Ukraïn. Mat. Zh., 60 (2008), pp. 204-216 (in Russian); translation in Ukrainian Math. J., 60 (2008), pp. 235-252. · Zbl 1164.70340
[27] Mironchenko, A., Karafyllis, I., and Krstic, M., Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances, SIAM J. Control Optim., 57 (2019), pp. 510-532, doi:10.1137/17M1161877. · Zbl 1406.93298
[28] Mironchenko, A. and Prieur, C., Input-to-state stability of infinite-dimensional systems: Recent results and open questions, SIAM Rev., 62 (2020), pp. 529-614, doi:10.1137/19M1291248. · Zbl 1453.93207
[29] Mironchenko, A., Prieur, C., and Wirth, F., Local stabilization of an unstable parabolic equation via saturated controls, IEEE Trans. Automat. Control, 66 (2021), pp. 2162-2176. · Zbl 1536.93670
[30] Mironchenko, A. and Wirth, F., Non-coercive Lyapunov functions for infinite-dimensional systems, J. Differential Equations, 266 (2019), pp. 7038-7072. · Zbl 1409.37075
[31] Nicolas Laurent-Brouty, P. G. and Costeseque, G., A coupled PDE-ODE model for bounded acceleration in macroscopic traffic flow models, IFAC-PapersOnLine, 51 (2018), pp. 37-42.
[32] Saldivar, B., Mondié, S., and Ávila Vilchis, J. C., The control of drilling vibrations: A coupled PDE-ODE modeling approach, Int. J. Appl. Math. Comput. Sci., 26 (2016), pp. 335-349. · Zbl 1347.93047
[33] Schmid, J. and Zwart, H., Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances, ESAIM Control Optim. Calc. Var., 27 (2021), pp. Paper No. 53, 37. · Zbl 1467.93272
[34] Temam, R., Infinite-dimensional Dynamical Systems in Mechanics and Physics, , 2nd ed., Springer-Verlag, New York, 1997. · Zbl 0871.35001
[35] Vladimirov, V. S., Equations of Mathematical Physics, Vol. 3 of Translated from the Russian by Littlewood, Audrey. Edited by Jeffrey, Alan, Pure and Applied Mathematics, Marcel Dekker, New York, 1971. · Zbl 0231.35002
[36] Xu, Z., Liu, Y., and Li, J., Adaptive stabilization for a class of PDE-ODE cascade systems with uncertain harmonic disturbances, ESAIM Control Optim. Calc. Var., 23 (2017), pp. 497-515. · Zbl 1358.93095
[37] Yuan, Y., Shen, Z., and Liao, F., Stabilization of coupled ODE-PDE system with intermediate point and spatially varying effects interconnection, Asian J. Control, 19 (2017), pp. 1060-1074. · Zbl 1366.93541
[38] Zheng, J. and Zhu, G., Input-to-state stability for a class of one-dimensional nonlinear parabolic PDEs with nonlinear boundary conditions, SIAM J. Control Optim., 58 (2020), pp. 2567-2587. · Zbl 1509.35140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.