×

The Shigesada-Kawasaki-Teramoto model: conditional symmetries, exact solutions and their properties. (English) Zbl 1518.35032

Summary: We study a simplification of the well-known Shigesada-Kawasaki-Teramoto model, which consists of two nonlinear reaction-diffusion equations with cross-diffusion. A complete set of \(Q\)-conditional (nonclassical) symmetries is derived using an algorithm adopted for the construction of conditional symmetries. The symmetries obtained are applied for finding a wide range of exact solutions, possible biological interpretation of some of which being presented. Moreover, an alternative application of the simplified model related to the polymerization process is suggested and exact solutions are found in this case as well.

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35C05 Solutions to PDEs in closed form
35K57 Reaction-diffusion equations

Software:

ReLie

References:

[1] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J Theoret Biol, 79, 83-99 (1979)
[2] Shigesada, N.; Kawasaki, K., Biological invasions: theory and practice (1997), Oxford University Press: Oxford University Press Oxford
[3] Lou, Y.; Tao, Y.; Winkler, M., Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model, J Differential Equations, 262, 5160-5178 (2017) · Zbl 1372.35038
[4] Kan-On, Y., On the structure of positive solutions for the Shigesada-Kawasaki-Teramoto model with large interspecific competition rate, Int J Bifurcation Chaos, 30, Article 2050001 pp. (2020) · Zbl 1433.35043
[5] Pham, D.; Temam, R., Weak solutions of the Shigesada-Kawasaki-Teramoto equations and their attractors, Nonlinear Anal, 159, 339-364 (2017) · Zbl 1371.35160
[6] Pham, D.; Temam, R., A result of uniqueness of solutions of the Shigesada-Kawasaki-Teramoto equations, Adv Nonlinear Anal, 8, 497-507 (2019) · Zbl 1437.35433
[7] Li, Q.; Wu, Y., Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion, Discrete Contin Dyn Syst, 40, 3657-3682 (2020) · Zbl 1439.35226
[8] Kersner, R.; Klincsik, M.; Zhanuzakova, D., A competition system with nonlinear cross-diffusion: exact periodic patterns, Rev Real Acad Cienc Exactas Fis Nat Ser A Mat, 116, 187 (2022) · Zbl 1498.35140
[9] Andreianov, M.; Bendahmane, B.; Ruiz-Baier, R., Analysis of a finite volume method for a cross-diffusion model in population dynamics, Math Models Methods Appl Sci, 21, 307-344 (2011) · Zbl 1228.65178
[10] Berres, S.; Ruiz-Baier, R., A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion, Nonlin Anal Real World Appl, 12, 2888-2903 (2011) · Zbl 1219.92059
[11] Gambino, G.; Lombardo, M. C.; Sammartino, M., Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math Comput Simul, 82, 1112-1132 (2012) · Zbl 1320.35170
[12] Li, J.; Ji, X., Numerical simulation and symmetry reduction of a two-component reaction-diffusion system, Adv Math Phys, 2020, 1-5 (2020) · Zbl 1478.35014
[13] Bluman, G. W.; Cheviakov, A. F.; Anco, S. C., Applications of symmetry methods to partial differential equations (2010), Springer: Springer New York · Zbl 1223.35001
[14] Arrigo, D. J., Symmetry analysis of differential equations (2015), John Wiley & Sons, Inc: John Wiley & Sons, Inc Hoboken, NJ · Zbl 1312.00002
[15] Cherniha, R.; Serov, M.; Pliukhin, O., Nonlinear reaction-diffusion-convection equations: Lie and conditional symmetry, exact solutions and their applications (2018), Chapman and Hall/CRC: Chapman and Hall/CRC New York · Zbl 1403.35002
[16] Bluman, G. W.; Cole, J. D., The general similarity solution of the heat equation, J Math Mech, 18, 1025-1042 (1969) · Zbl 0187.03502
[17] Cherniha, R.; Davydovych, V., Nonlinear reaction-diffusion systems — conditional symmetry, exact solutions and their applications in biology, (Lecture notes in mathematics (2017), Springer: Springer Cham), 2196 · Zbl 1391.35003
[18] Oliveri, F., ReLie: a reduce program for Lie group analysis of differential equations, Symmetry, 13, 1826 (2021)
[19] Fushchych, V. I.; Serov, M. I.; Chopyk, V. I., Conditional invariance and nonlinear heat equations (in Russian), Proc Acad Sci Ukraine, 9, 17-21 (1988) · Zbl 0662.35057
[20] Fushchych, W. I.; Shtelen, W. M.; Serov, M. I., Symmetry analysis and exact solutions of equations of nonlinear mathematical physics (1993), Kluwer: Kluwer Dordrecht · Zbl 0838.58043
[21] Cherniha, R.; Henkel, M., The exotic conformal galilei algebra and nonlinear partial differential equations, J Math Anal Appl, 369, 120-132 (2010) · Zbl 1197.35017
[22] Fokas, A. S.; Liu, Q. M., Generalized conditional symmetries and exact solutions of nonitegrable equations, Theor Math Phys, 99, 571-582 (1994) · Zbl 0850.35097
[23] Qu, C., Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source, Stud Appl Math, 99, 107-136 (1997) · Zbl 0879.35031
[24] Zhdanov, R. Z., Conditional Lie-Bäcklund symmetry and reduction of evolution equations, J Phys A: Math Gen, 28, 3841-3850 (1995) · Zbl 0859.35115
[25] Ji, L.; Qu, C., Conditional Lie-Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations with convection and source, Stud Appl Math, 131, 266-301 (2013) · Zbl 1338.37077
[26] Cherniha, R.; Davydovych, V.; Muzyka, L., Lie symmetries of the Shigesada-Kawasaki-Teramoto system, Comm Nonlinear Sci Numer Simulat, 45, 81-92 (2017) · Zbl 1485.35259
[27] Cherniha, R.; Myroniuk, L., New exact solutions of a nonlinear cross-diffusion system, J Phys A Math Theor, 41, Article 395204 pp. (2008) · Zbl 1166.35336
[28] Li, J.; Zhao, J., Symmetry classification and solutions for Shigesada-Kawasaki-Teramoto system, Ital J Pure Appl Math, 47, 649-663 (2022)
[29] Cherniha, R.; Dutka, V., A diffusive Lotka-Volterra system: Lie symmetries, exact and numerical solutions, Ukr Math J, 56, 1665-1675 (2004) · Zbl 1150.35446
[30] Cherniha, R.; King, J. R., Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I, J Phys A: Math Gen, 33, 7839 (2000), 267-82-41 · Zbl 0947.35026
[31] Cherniha, R.; King, J. R., Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II, J Phys A: Math Gen, 36, 405-425 (2003) · Zbl 1059.35058
[32] Cherniha, R.; Davydovych, V., Construction and application of exact solutions of the diffusive Lotka-Volterra system: A review and new results, Comm Nonlinear Sci Numer Simulat, 113, Article 106579 pp. (2022) · Zbl 1491.35098
[33] Murray, J. D., Mathematical biology (1989), Springer: Springer Berlin · Zbl 0682.92001
[34] Witelski, T. P., Merging traveling waves for the porous-Fisher’s equation, Appl Math Left, 8, 57-62 (1995) · Zbl 0830.35055
[35] Fadai, N. T.; Simpson, M. J., New travelling wave solutions of the Porous-Fisher model with a moving boundary, J Phys A Math Theor, 53, Article 095601 pp. (2020) · Zbl 1514.35490
[36] Arrigo, D. J.; Hill, J. M., Nonclassical symmetries for nonlinear diffusion and absorption, Stud Appl Math, 94, 21-39 (1995) · Zbl 0822.35064
[37] Cherniha, R., New exact solutions of a nonlinear reaction-diffusion equation arising in mathematical biology and their properties, Ukr Math J, 53, 1712-1727 (2001) · Zbl 1003.35034
[38] Zhdanov, R. Z.; Lahno, V. I., Conditional symmetry of a porous medium equation, Physica D, 122, 178-186 (1998) · Zbl 0952.76087
[39] Cherniha, R.; King, J. R., Lie symmetries and conservation laws of nonlinear multidimensional reaction-diffusion systems with variable diffusivities, IMA J Appl Math, 71, 391-408 (2006) · Zbl 1122.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.