×

Ideals and continuity for quantaloid-enriched categories. (English) Zbl 1518.18005

Whereas a quantale is a monoid in the symmetric monoidal closed category \(\boldsymbol{Sup}\)of complete lattices and supremum-preserving morphisms, a quantaloid \(\mathcal{Q}\)is a category enriched in \(\boldsymbol{Sup}\).
Domain theory [S. Abramsky (ed.) et al., Handbook of logic in computer science. Vol. 3: Semantic structures. Oxford: Clarendon Press (1994; Zbl 0829.68111); G. Gierz et al., Continuous lattices and domains. Cambridge: Cambridge University Press (2003; Zbl 1088.06001)] originated from the work of D. Scott [Lect. Notes Math. 274, 97–136 (1972; Zbl 0239.54006); Courant Computer Sci. Sympos. 2(1970), 65–106 (1972; Zbl 0279.68042); D. Scott and C. Strachey, Microwave Res. Inst. Sympos. Ser. 21, 19–46 (1971; Zbl 0268.68004); D. Scott, Lect. Notes Math. 188, 311–366 (1971; Zbl 0228.68016)] as a formal basis for the semantics of programming languages, developing into so-called quantitative domain theory, where one uses quantale-enriched categories, for which general concepts of approxiamtion and convergence are addressed.
I. Stubbe [Theor. Comput. Sci. 373, No. 1–2, 142–160 (2007; Zbl 1111.68073)] studied \(\mathcal{Q}\)-categories as crucial mathematical structure for a so-called dynamic logic as common mathematical foundation for dynamic phenomena in both computer science and physics.This paper aims to further develop [loc. cit.] by defining \(\mathcal{Q}\)-categories relative to any saturated class of presheaves. The authors propose several saturated classes of presheaves that are natural generalizations of the concept of ideals in posetal domain theory. They establish quantitative domain theory based on \(\mathcal{Q}\)-categories, which admits of unification of quantale-enriched categories and the approach of partial metric spaces into one framework.
The synopsis of the paper goes as follows.
§ 2
is concerned with preliminaries on quantaloid-enriched categories.
§ 3
studies, based on a saturated class \(\Phi\)of presheaves, \(\Phi \)-cocompleteness of \(\mathcal{Q}\)-categories.
§ 4
gives three saturated classes of presheves, namely, that of all irreducible ideals, that of all flat ideals and that of all conical ideals.
§ 5
defines \(\Phi\)-continuity in \(\mathcal{Q}\)-categories, studying it as a generalization of continuity in domain theory and computing several examples to show the non-triviality of the generalization.
§ 6
defines \(\Phi\)-algebraic \(\mathcal{Q}\)-categories, studying them.
§ 7
ends the paper with a conclusion.

MSC:

18B35 Preorders, orders, domains and lattices (viewed as categories)
18D20 Enriched categories (over closed or monoidal categories)
06F07 Quantales

References:

[1] 6. Remark. (1) If Φ = F in , Φ = C D or Φ = I in , then a (Φ-cocomplete) Φ-continuous 2-category is just a (directed complete) continuous poset in the sense of [14].
[2] If Q = 2, Φ is a saturated class of presheaves, Z is a union-complete subset system, then a Φ-continuous 2-category is just a Z-continuous poset in the sense of [6], and a Φ-continuous Φ-compelte 2-category is just a Z-continuous poset in the sense of [5].
[3] In the case that Q is a commutative unital quantale, Φ and J are saturated, the concept of a Φ-continuous Q-category agrees with that of a J-continuous quantale-enriched category in [19].
[4] Let Q be a frame and let F in be the class of presheaves of inhabited flat ideals. Note that the concept of an inhabited flat ideal agree with the concept of an ideal in
[5] Thus, an F in -continuous F in -cocomplete Q-category is just a continuous Ω-partially ordered set or a fuzzy domain in the sense of [27, 62].
[6] S. Abramsky, A. Jung, Domain Theory, in: S. Abramsky, D. M. Gabbay, T. S. E. Maibaum (Eds.), Handbook for Logic in Computer Science, vol. 3, Clarendon Press, Oxford, 1994.
[7] J. Adámek, H. Herrlich, G. E. Strecker, Abstract and Concrete Categories, Wiley, NewYork, 1990. · Zbl 0695.18001
[8] M. H. Albert, G. M. Kelly, The closure of a class of colimits, Journal of Pure and Applied Algebra 51 (1988) 1-17. · Zbl 0656.18004
[9] P. America, J. J. M. M. Rutten, Solving reflexive domain equations in a category of complete metric spaces, Journal of Computer and System Sciences 39 (1989) 343-375. · Zbl 0717.18002
[10] H. J. Bandelt, M. Erné, The category of Z-continuous posets, Journal of Pure and Applied Algebra 30 (1983) 219-226. · Zbl 0523.06001
[11] A. Baranga, Z-continuous posets, Discrete Mathematics 152 (1996) 33-45. · Zbl 0851.06003
[12] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Aca-demic Publishers, Plenum Publishers, New York, 2002. · Zbl 1067.03059
[13] J. Bénabou, Introduction to bicategories, Lecture Notes in Mathematics 47 (1967) 1-77. · Zbl 1375.18001
[14] G. J. Bird, G. M. Kelly, A. J. Power and R. H. Street, Flexible limits for 2-categories, Journal of Pure and Applied Algebra 61 (1989) 1-27. · Zbl 0687.18007
[15] M. M. Clementino, D. Hofmann, I. Stubbe, Exponentiable functors between quantaloid-enriched categories, Applied Categorical Structures 17 (2009) 91-101. · Zbl 1188.18005
[16] M. Erné, Z-Continuous posets and their topological manifestation, Applied Categor-ical Structures 7 (1999) 31-70. · Zbl 0939.06005
[17] L. Fan, A new approach to quantitative domain theory, Electronic Notes in Theoret-ical Computer Science 45 (2001) 77-87. · Zbl 1260.68217
[18] R. C. Flagg, R. Kopperman, Continuity spaces: Reconciling domains and metric spaces, Theoretical Computer Science 177 (1997) 111-138. · Zbl 0901.68109
[19] G. Gierz, K. H. Hofmann, K. Keimel, et al., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003. · Zbl 1088.06001
[20] J. He, H. Lai, L. Shen, Towards probabilistic partial metric spaces: Diagonals between distance distributions, Fuzzy Sets and Systems 370 (2019) 99-119. · Zbl 1423.54020
[21] H. Heymans, I. Stubbe, Elementary characterisation of quantaloids of closed cribles, Journal of Pure and Applied Algebra 216 (2012) 1952-1960. · Zbl 1279.18007
[22] D. Hofmann, L. Sousa, Aspects of algebraic algebras, Logical Methods in Computer Science 13 (2017) 1-25. · Zbl 1456.18006
[23] D. Hofmann, I. Stubbe, Topology from enrichment: the curious case of partial met-rics, Cahiers Topologie Géométrie Différentielle Catégoriques 59 (2018) 307-353. · Zbl 1407.18008
[24] D. Hofmann, P. L. Waszkiewicz, Approximation in quantale-enriched categories, Topology and its Applications 158 (2011) 963-977. · Zbl 1233.06004
[25] U. Höhle, Commutative, residuated l-monoids, in: U. Höhle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory, Kluwer Academic Publishers, Dordrecht, 1995, pp. 53-105.
[26] U. Höhle, Categorical foundations of topology with applications to quantaloid en-riched topological spaces, Fuzzy Sets and Systems 256 (2014) 166-210. · Zbl 1339.54009
[27] U. Höhle, T. Kubiak, A non-commutative and non-idempotent theory of quantale sets, Fuzzy Sets and Systems 166 (2011) 1-43. · Zbl 1226.06011
[28] G. M. Kelly, Basic Concepts of Enriched Category Theory, London Mathematical Society Lecture Notes Series vol. 64, Cambridge University Press, Cambridge, 1982. · Zbl 0478.18005
[29] G. M. Kelly, V. Schmitt, Notes on enriched categories with colimits of some class, Theory and Applications of Categories 14 (2005) 399-423. · Zbl 1082.18004
[30] R. Kopperman, All topologies come from generalized metrics, The American Math-ematical Monthly 95 (1988) 89-97. · Zbl 0653.54020
[31] H. Lai, L. Shen, Fixed points of adjoint functors enriched in a quantaloid, Fuzzy Sets and Systems 321 (2017) 1-28. · Zbl 1390.18006
[32] H. Lai, D. Zhang, Complete and directed complete Ω-categories, Theoretical Com-puter Science 388 (2007) 1-25. · Zbl 1131.18006
[33] H. Lai, D. Zhang, G. Zhang, A comparative study of ideals in fuzzy orders, Fuzzy Sets and Systems 382 (2020) 1-28. · Zbl 1465.06001
[34] M. Liu, B. Zhao, Closure operators and closure systems on quantaloid-enriched cat-egories, Journal of Mathematical Research with Applications 33 (2013) 23-34. · Zbl 1289.18007
[35] M. Liu, B. Zhao, Cartesian closed categories of F Z-domains, Acta Mathematica Sinica, English Series 29 (2013) 2373-2390. · Zbl 1276.06004
[36] M. Liu, B. Zhao, Two cartesian closed subcategories of fuzzy domains, Fuzzy Sets and Systems 238 (2014) 102-112. · Zbl 1315.18011
[37] S. G. Matthews, Partial metric topology, in Proceedings of the 8th Summer Confer-ence on Topology and Its Applications, Vol. 728, 1992, pp. 176-185.
[38] S. J. O’Neill, A fundamental study into the theory and application of the partial metric spaces, PhD thesis, University of Warwick, Department of Computer Science, March 1998.
[39] Q. Pu, D. Zhang, Preordered sets valued in a GL-monoid, Fuzzy Sets and Systems 187 (2012) 1-32. · Zbl 1262.18008
[40] A. Pitts, Applications of sup-lattice enriched category theory to sheaf theory, Pro-ceedings of the London Mathematical Society 57 (1988) 433-480. · Zbl 0619.18005
[41] S. P. Rao, Q. G. Li, Fuzzy Z-continuous posets, Abstract and Applied Analysis, vol. 2013, Article ID 607934, 14 pages, 2013. · Zbl 1470.06001
[42] K. I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Math-ematics Series, Vol. 234, Longman, Essex, 1990. · Zbl 0703.06007
[43] K. I. Rosenthal, Quantaloids, enriched categories and automata theory, Applied Cat-egorical Structures 3 (1995) 279-301. · Zbl 0833.18002
[44] K. I. Rosenthal, The Theory of Quantaloids, Pitman Research Notes in Mathematics Series, Vol.348, Longman, Essex, 1996. · Zbl 0845.18003
[45] J. J. M. M. Rutten, Elements of generalized ultrametric domain theory, Theoretical Computer Science 170 (1996) 349-381. · Zbl 0874.68189
[46] D. S. Scott, Outline of a mathematical theory of computation, in: The Fourth Annual Princeton Conf. on Information Sciences and Systems, Princeton University Press, Princeton, NJ, 1970, pp. 169-176.
[47] D. S. Scott, Continuous lattices, topos, algebraic geometry and logic, in: Lecture Notes in Mathematics, Springer, Berlin, Vol. 274, 1972, pp. 97-136. · Zbl 0239.54006
[48] L. Shen, Q-closure spaces, Fuzzy Sets and Systems 300 (2016) 102-133. · Zbl 1378.54015
[49] L. Shen, Y. Tao, D. Zhang, Chu connections and back diagonals between Q-distributors, Journal of Pure and Applied Algebra 220 (2016) 1858-1901. · Zbl 1338.18037
[50] L. Shen, W. Tholen, Topological categories, quantaloids and Isbell adjunctions, Topology and its Applications 200 (2016) 212-236. · Zbl 1333.18009
[51] L. Shen, D. Zhang, Categories enriched over a quantaloid: Isbell adjunctions and Kan adjunctions, Theory and Applications of Categories 28 (2013) 577-615. · Zbl 1273.18022
[52] M. B. Smyth, Quasi-uniformities: Reconciling domains and metric spaces, Lecture Notes in Comput. Sci. 298 (1988) 236-253. · Zbl 0668.54018
[53] R. H. Street, Enriched categories and cohomology, Quaestiones Mathematicae 6 (1983) 265-283. · Zbl 0523.18007
[54] I. Stubbe, Categorical structures enriched in a quantaloid: Categories, distributors, functors, Theory and Applications of Categories 14 (2005) 1-45. · Zbl 1079.18005
[55] I. Stubbe, Categorical structures enriched in a quantaloid: Tensored and cotensored categories, Theory and Applications of Categories 16 (2005) 283-306. · Zbl 1119.18005
[56] I. Stubbe, Categorical structures enriched in a quantaloid: Orders and ideals over a base quantaloid, Applied Categorical Structures 13 (2005) 235-255. · Zbl 1093.06013
[57] I. Stubbe, Towards “dynamic domains”: Totally continuous cocomplete Q-categories, Theoretical Computer Science 373 (2007) 142-160. · Zbl 1111.68073
[58] I. Stubbe, “Hausdorff distance” via conical cocompletion, Cahiers Topologie Géomé-trie Différentielle Catégoriques 51 (2010) 51-76. · Zbl 1260.18009
[59] I. Stubbe, An introduction to quantaloid-enriched categories, Fuzzy Sets and Systems 256 (2014) 95-116. · Zbl 1335.18002
[60] Y. Tao, H. Lai, D. Zhang, Quantale-valued preorders: globalization and cocomplete-ness, Fuzzy Sets and Systems 256 (2014) 236-251. · Zbl 1337.06010
[61] K. R. Wagner, Solving recursive domain equations with enriched categories, PhD thesis, Carnegie Mellon University, 1994.
[62] K. R. Wagner, Liminf convergence in Ω-categories, Theoretical Computer Science 184 (1997) 61-104. · Zbl 0935.18008
[63] R. F. C. Walters, Sheaves and Cauchy-complete categories, Cahiers Topologie Géo-métrie Différentielle Catégoriques 22 (1981) 283-286. · Zbl 0495.18009
[64] R. F. C. Walters, Sheaves on sites as Cauchy complete categories, Journal of Pure and Applied Algebra 24 (1982) 95-102. · Zbl 0497.18016
[65] P. Waszkiewicz, Quantitative continuous domains, Applied Categorical Structures 11 (2003) 41-67. · Zbl 1030.06005
[66] J. B. Wright, E. G. Wagner, J. W. Thatcher, A uniform approach to inductive posets and inductive closure, Theoretical Computer Science 7 (1978) 57-77. · Zbl 0732.06001
[67] W. Yao, Quantitative domains via fuzzy sets: Part I: continuity of fuzzy directed-complete poset, Fuzzy Sets and Systems 161 (2010) 983-987. · Zbl 1193.06007
[68] W. Yao, F. G. Shi, Quantitative domains via fuzzy sets: Part II: Fuzzy Scott topology on fuzzy directed-complete posets, Fuzzy Sets and Systems 173 (2011) 60-80. · Zbl 1234.06007
[69] W. Yao, B. Zhao, A duality between Ω-categories and algebraic Ω-categories, Elec-tronic Notes in Theoretical Computer Science 301 (2014) 153-168. · Zbl 1338.18038
[70] Q. Y. Zhang, L. Fan, Continuity in quantitative domains, Fuzzy Sets and Systems 154 (2005) 118-131. · Zbl 1080.06007
[71] Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt Valeria de Paiva, Nuance Communications Inc: valeria.depaiva@gmail.com Richard Garner, Macquarie University: richard.garner@mq.edu.au Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu
[72] Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat Stephen Lack, Macquarie University: steve.lack@mq.edu.au Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca Jiri Rosický, Masaryk University: rosicky@math.muni.cz Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it Michael Shulman, University of San Diego: shulman@sandiego.edu Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si James Stasheff, University of North Carolina: jds@math.upenn.edu
[73] Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.