×

On the bundle of Clifford algebras over the space of quadratic forms. (English) Zbl 1518.15025

This paper is of interest for experts in noncommutative higher-dimensional algebra. It treats various aspects of the Clifford algebra bundle of the space of quadratic forms. The introduction provides an overview of existing literature, the general setup and the definition of tensor algebras, with special emphasis on N. Bourbaki’s work on sesquilinear and quadratic forms [Éléments de mathématique. XXIV. Part. 1: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chap. 9: Formes sesquilinéaires et formes quadratiques. Paris: Hermann & Cie (1959; Zbl 0102.25503)].
Section 2 on Clifford algebras defines quadratic forms, bilinear forms in characteristic 2, and the action of bilinear forms on quadratic forms. After the definition of Clifford algebras, their universality property is established. Section 3 focuses on operations within and between Clifford algebras, and comments on the representation of Clifford algebras on exterior algebras (zero quadratic form). It further clarifies the roles of automorphisms and deformations in the Clifford algebra bundle. Bilinear forms \(F\), \(Q'(x) = Q(x)+F(x,x)\) linearly map fibers onto fibers \(\mathrm{Cl}(Q) \rightarrow \mathrm{Cl}(Q')\), and alternating forms define vertical automorphisms, mapping every fiber into itself. They are also called gauge transformations.
Finally, with field characteristic \(\neq 2\) the map \(\mathrm{Cl}(Q) \rightarrow \bigwedge (V)\) from a Clifford algebra with quadratic form to an exterior algebra over the same vector space \(V\) is called symbol map and its inverse is the quantization map. The work contains many helpful footnotes and detailed references to the related literature.

MSC:

15A66 Clifford algebras, spinors
15A63 Quadratic and bilinear forms, inner products
32G08 Deformations of fiber bundles
15A75 Exterior algebra, Grassmann algebras

Citations:

Zbl 0102.25503

Software:

CLIFFORD

References:

[1] Abłamowicz, R.; Lounesto, P.; Abłamowicz, R.; Lounesto, P.; Parra, JM, On Clifford algebras of a bilinear form with an antisymmetric part, Clifford Algebras with Numeric and Symbolic Computations, 167-188 (1996), Boston: Birkhäuser, Boston · Zbl 0856.15028 · doi:10.1007/978-1-4615-8157-4_11
[2] Abłamowicz, R.; Gonçalves, I.; da Rocha, R., Bilinear covariants and spinor fields duality in quantum Clifford algebras, J. Math. Phys., 55, 103501 (2014) · Zbl 1302.81113 · doi:10.1063/1.4896395
[3] Bleecker, D., Gauge Theory and Variational Principles (2005), Mineola: Dover, Mineola
[4] Bourbaki, N., Algèbre, Chapitre 9, Formes sesquilinéares et Formes Quadratiques (1959), Paris: Hermann, Paris · Zbl 0102.25503
[5] Bourbaki, N.: Algebra. Moduli, Kolca, Formy. Nauka, Moskva (1966). (in Russian)
[6] Bourbaki, N., Algebra I: Chapters 1-3 (1998), Berlin: Springer, Berlin
[7] Bourbaki, N., Algèbre-9 (2006), Berlin: Springer, Berlin · Zbl 1105.18001 · doi:10.1007/978-3-540-34493-3
[8] Bourbaki, N., Algèbre Chapitres 4 à 7 (2007), Berlin: Springer, Berlin
[9] Chevalley, C., Fundamental Concepts of Algebra (1956), New York: Academic Press, New York · Zbl 0074.01502
[10] Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras: Collected Works, vol. 2. Springer, Berlin (1996). (Reprint of Chevalley, C.: The algebraic theory of spinors, Columbia University Press (1954)) · Zbl 0057.25901
[11] Crumeyrolle, A., Diracian theory of fields—spinorgravitation, Rep. Math. Phys., 31, 29 (1992) · Zbl 0772.53050 · doi:10.1016/0034-4877(92)90004-K
[12] Dieudonné, J., Treatise on Analysis (1972), New York: Academic Press, New York · Zbl 0268.58001
[13] Erdmann, K.; Holm, T., Algebras and Representation Theory (2018), Berlin: Springer, Berlin · Zbl 1429.16001 · doi:10.1007/978-3-319-91998-0
[14] Fauser, B., Abłamowicz, R.: On the decomposition of Clifford algebras of arbitrary bilinear form. In: Clifford Algebras and their Applications in Mathematical Physics: Volume 1: Algebra and Physics. Birkhäuser (2000). arXiv:math/9911180(though with a different numeration of sections and equations)
[15] Fauser, B., Clifford geometric parameterization of inequivalent vacua, Math. Methods Appl. Sci., 24, 885-912 (2001) · Zbl 0990.15017 · doi:10.1002/mma.247
[16] Gilbert, JE; Murray, MAM, Clifford Algebras and Dirac Operators in Harmonic Analysis (1971), Cambridge: Cambridge University Press, Cambridge
[17] Graf, W., Differential forms as spinors, Ann. I. H. P., 29, 85-109 (1978) · Zbl 0397.53005
[18] Greub, W., Multilinear Algebra (1978), Berlin: Springer, Berlin · Zbl 0387.15001 · doi:10.1007/978-1-4613-9425-9
[19] Helmstetter, J.; Micali, A., Quadratic Mappings and Clifford Algebras (2008), Basel: Birkhüser, Basel · Zbl 1144.15025
[20] Itin, Y.; Hehl, FW; Obukhov, YuN, Premetric equivalent of general relativity, Phys. Rev. D, 95, o84020 (2017) · doi:10.1103/PhysRevD.95.084020
[21] Ivanenko, D.; Obukhov, YuN, Gravitational interaction of fermion antisymmetric forms, Ann. der. Phys., 42, 59-70 (1985) · Zbl 0574.53052 · doi:10.1002/andp.19854970110
[22] Lounesto, P., Clifford Algebras and Spinors (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0973.15022 · doi:10.1017/CBO9780511526022
[23] Meinrenken, E., Clifford Algebras and Lie Theory (2013), Berlin: Springer, Berlin · Zbl 1267.15021 · doi:10.1007/978-3-642-36216-3
[24] Northcott, DG, Multilinear Algebra (2009), Cambridge: Cambridge University Press, Cambridge
[25] Obukhov, YuN; Solodukhin, SN, Dirac equation and the Ivanenko-Landau-Kähler equation, Int. J. Theor. Phys., 33, 225-245 (1994) · Zbl 0796.53076 · doi:10.1007/BF00844970
[26] Onishchik, AL; Sulanke, R., Algebra und Geometrie: Moduln und Algebren (1988), Berlin: VEB Deutscher Verlag der Wissenschaften, Berlin · Zbl 0629.00001
[27] Oziewicz, Z.: Clifford algebra of multivectors. In: Keller, J., Oziewicz, Z. (eds.) Proc. Int. Conf. on the Theory of the Electron (Cuautitlan, Mexico, 1995). Adv. in Appl. Clifford Alg. vol. 7(Suppl.), pp. 467-486 (1997) · Zbl 1221.15032
[28] Oziewicz, Z., From Grassmann to Clifford, in Clifford Algebras and Their Applications in Mathematical Physics (1986), Kufstein: Reidel, Kufstein
[29] Percacci, R., Geometry of Nonlinear Field Theories (1986), Singapore: World Scientific, Singapore · Zbl 0608.53066 · doi:10.1142/0251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.