×

The \(\text{A}_2\) Andrews-Gordon identities and cylindric partitions. (English) Zbl 1518.05009

Summary: Inspired by a number of recent papers by Corteel, Dousse, Foda, Uncu and Welsh on cylindric partitions and Rogers-Ramanujan-type identities, we obtain the \(\text{A}_2\) (or \(\text{A}_2^{(1)}\)) analogues of the celebrated Andrews-Gordon identities. We further prove \(q\)-series identities that correspond to the infinite-level limit of the Andrews-Gordon identities for \(\text{A}_{r-1} \) (or \(\text{A}_{r-1}^{(1)}\)) for arbitrary rank \(r\). Our results for \(\text{A}_2\) also lead to conjectural, manifestly positive, combinatorial formulas for the 2-variable generating function of cylindric partitions of rank 3 and level \(d\), such that \(d\) is not a multiple of 3.

MSC:

05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
11P84 Partition identities; identities of Rogers-Ramanujan type
17B65 Infinite-dimensional Lie (super)algebras
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

Software:

qFunctions

References:

[1] Ablinger, Jakob, {\tt qFunctions}—a Mathematica package for \(q\)-series and partition theory applications, J. Symbolic Comput., 145-166 (2021) · Zbl 1465.05001 · doi:10.1016/j.jsc.2021.02.003
[2] Agarwal, A. K., The Bailey lattice, J. Indian Math. Soc. (N.S.), 57-73 (1988) (1987) · Zbl 0668.10020
[3] Andrews, George E., An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A., 4082-4085 (1974) · Zbl 0289.10010 · doi:10.1073/pnas.71.10.4082
[4] Andrews, George E., The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, xiv+255 pp. (1976), Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam · Zbl 0996.11002
[5] Andrews, George E., Multiple series Rogers-Ramanujan type identities, Pacific J. Math., 267-283 (1984) · Zbl 0547.10012
[6] Andrews, George E., An \(A_2\) Bailey lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc., 677-702 (1999) · Zbl 0917.05010 · doi:10.1090/S0894-0347-99-00297-0
[7] Berkovich, Alexander, Fermionic counting of RSOS states and Virasoro character formulas for the unitary minimal series \(M(\nu ,\nu +1)\): exact results, Nuclear Phys. B, 315-348 (1994) · Zbl 1020.81620 · doi:10.1016/0550-3213(94)90108-2
[8] Borodin, Alexei, Periodic Schur process and cylindric partitions, Duke Math. J., 391-468 (2007) · Zbl 1131.22003 · doi:10.1215/S0012-7094-07-14031-6
[9] Bressoud, David M., An analytic generalization of the Rogers-Ramanujan identities with interpretation, Quart. J. Math. Oxford Ser. (2), 385-399 (1980) · Zbl 0414.10004 · doi:10.1093/qmath/31.4.385
[10] Bressoud, David M., Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc., 54 pp. (1980) · Zbl 0422.10007 · doi:10.1090/memo/0227
[11] Burge, William H., Restricted partition pairs, J. Combin. Theory Ser. A, 210-222 (1993) · Zbl 0781.05007 · doi:10.1016/0097-3165(93)90057-F
[12] Capparelli, S., The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J., 379-397 (2006) · Zbl 1166.17009 · doi:10.1007/s11139-006-0150-7
[13] Corteel, Sylvie, Rogers-Ramanujan identities and the Robinson-Schensted-Knuth correspondence, Proc. Amer. Math. Soc., 2011-2022 (2017) · Zbl 1357.05007 · doi:10.1090/proc/13373
[14] S. Corteel, Unpublished.
[15] Corteel, Sylvie, Cylindric partitions and some new \(A_2\) Rogers-Ramanujan identities, Proc. Amer. Math. Soc., 481-497 (2022) · Zbl 1479.05012 · doi:10.1090/proc/15570
[16] Corteel, Sylvie, Plane overpartitions and cylindric partitions, J. Combin. Theory Ser. A, 1239-1269 (2011) · Zbl 1231.05011 · doi:10.1016/j.jcta.2010.12.001
[17] Corteel, Sylvie, The \(A_2\) Rogers-Ramanujan identities revisited, Ann. Comb., 683-694 (2019) · Zbl 1454.11187 · doi:10.1007/s00026-019-00446-7
[18] Di Francesco, Philippe, Conformal field theory, Graduate Texts in Contemporary Physics, xxii+890 pp. (1997), Springer-Verlag, New York · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[19] Fateev, V. A., The models of two-dimensional conformal quantum field theory with \(Z_n\) symmetry, Internat. J. Modern Phys. A, 507-520 (1988) · doi:10.1142/S0217751X88000205
[20] Feigin, Boris, Andrews-Gordon type identities from combinations of Virasoro characters, Ramanujan J., 33-52 (2008) · Zbl 1244.05028 · doi:10.1007/s11139-006-9011-7
[21] Feigin, Boris, I. M. Gel\cprime fand Seminar. Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities, Adv. Soviet Math., 139-148 (1993), Amer. Math. Soc., Providence, RI · Zbl 0831.17012
[22] Foda, Omar, A Burge tree of Virasoro-type polynomial identities, Internat. J. Modern Phys. A, 4967-5012 (1998) · Zbl 0939.81006 · doi:10.1142/S0217751X98002328
[23] Foda, O., Cylindric partitions, \( \mathcal W_r\) characters and the Andrews-Gordon-Bressoud identities, J. Phys. A, 164004, 37 pp. (2016) · Zbl 1352.82003 · doi:10.1088/1751-8113/49/16/164004
[24] Gasper, George, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, xxvi+428 pp. (2004), Cambridge University Press, Cambridge · Zbl 1129.33005 · doi:10.1017/CBO9780511526251
[25] Gessel, Ira M., Cylindric partitions, Trans. Amer. Math. Soc., 429-479 (1997) · Zbl 0865.05003 · doi:10.1090/S0002-9947-97-01791-1
[26] Gordon, Basil, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math., 393-399 (1961) · Zbl 0100.27303 · doi:10.2307/2372962
[27] Griffin, Michael J., A framework of Rogers-Ramanujan identities and their arithmetic properties, Duke Math. J., 1475-1527 (2016) · Zbl 1405.11140 · doi:10.1215/00127094-3449994
[28] Kac, V. G., Infinite-dimensional Lie algebras, and the Dedekind \(\eta \)-function, Funkcional. Anal. i Prilo\v{z}en., 77-78 (1974) · Zbl 0299.17005
[29] Kac, V. G., Infinite-dimensional algebras, Dedekind’s \(\eta \)-function, classical M\"{o}bius function and the very strange formula, Adv. in Math., 85-136 (1978) · Zbl 0391.17010 · doi:10.1016/0001-8708(78)90033-6
[30] Kac, Victor G., Infinite-dimensional Lie algebras, xxii+400 pp. (1990), Cambridge University Press, Cambridge · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[31] Kac, Victor G., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math., 125-264 (1984) · Zbl 0584.17007 · doi:10.1016/0001-8708(84)90032-X
[32] Kac, Victor G., Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A., 4956-4960 (1988) · Zbl 0652.17010 · doi:10.1073/pnas.85.14.4956
[33] Kac, V. G., Infinite-dimensional Lie algebras and groups. Classification of modular invariant representations of affine algebras, Adv. Ser. Math. Phys., 138-177 (1988), World Sci. Publ., Teaneck, NJ · Zbl 0742.17022
[34] Kac, V. G., Branching functions for winding subalgebras and tensor products, Acta Appl. Math., 3-39 (1990) · Zbl 0717.17017 · doi:10.1007/BF00053290
[35] S. Kanade and M. C. Russell, Completing the \(A_2\) Andrews-Schilling-Warnaar identities, Int. Math. Res. Not. IMRN, To appear, 2203.05690.
[36] Koshida, Shinji, Free field theory and observables of periodic Macdonald processes, J. Combin. Theory Ser. A, Paper No. 105473, 42 pp. (2021) · Zbl 1471.82014 · doi:10.1016/j.jcta.2021.105473
[37] Koutschan, Christoph, A fast approach to creative telescoping, Math. Comput. Sci., 259-266 (2010) · Zbl 1218.68205 · doi:10.1007/s11786-010-0055-0
[38] C. Krattenthaler, Alternative proof of a proposition on cylindric partitions by Alexei Borodin, 2008, 3 pp., Unpublished manuscript, https://www.mat.univie.ac.at/ kratt/papers.html.
[39] R. Langer, Enumeration of cylindric plane partitions, Discrete Math. Theor. Comput. Sci. Proc. AR (2012), 793-804. · Zbl 1412.05016
[40] R. Langer, Enumeration of cylindric plane partitions – part II, 1209.1807, 2012.
[41] Lepowsky, J., Generalized Verma modules, loop space cohomology and MacDonald-type identities, Ann. Sci. \'{E}cole Norm. Sup. (4), 169-234 (1979) · Zbl 0414.17007
[42] Lepowsky, J., Lie algebras and related topics. Affine Lie algebras and combinatorial identities, Lecture Notes in Math., 130-156 (1981), Springer, Berlin-New York · Zbl 0505.17009
[43] Lepowsky, J., Lie algebras and classical partition identities, Proc. Nat. Acad. Sci. U.S.A., 578-579 (1978) · Zbl 0379.17003 · doi:10.1073/pnas.75.2.578
[44] Lepowsky, J., Lie algebraic approaches to classical partition identities, Adv. in Math., 15-59 (1978) · Zbl 0384.10008 · doi:10.1016/0001-8708(78)90004-X
[45] Lepowsky, James, The Rogers-Ramanujan identities: Lie theoretic interpretation and proof, Proc. Nat. Acad. Sci. U.S.A., 699-701 (1981) · Zbl 0449.17010 · doi:10.1073/pnas.78.2.699
[46] Lepowsky, James, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Nat. Acad. Sci. U.S.A., 7254-7258 (1981) · Zbl 0472.17005 · doi:10.1073/pnas.78.12.7254
[47] Lepowsky, James, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv. in Math., 21-72 (1982) · Zbl 0488.17006 · doi:10.1016/S0001-8708(82)80012-1
[48] Lepowsky, James, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math., 199-290 (1984) · Zbl 0577.17009 · doi:10.1007/BF01388447
[49] Macdonald, I. G., Affine root systems and Dedekind’s \(\eta \)-function, Invent. Math., 91-143 (1972) · Zbl 0244.17005 · doi:10.1007/BF01418931
[50] Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, x+475 pp. (1995), The Clarendon Press, Oxford University Press, New York · Zbl 0899.05068
[51] P. A. MacMahon, Memoir on the theory of the partition of numbers — part I, Philos. Trans. Roy. Soc. London Ser. A 187 (1897), 619-673. · JFM 27.0134.04
[52] MacMahon, Percy A., Combinatory analysis. Vol. I, II (bound in one volume), Dover Phoenix Editions, ii+761 pp. (2004), Dover Publications, Inc., Mineola, NY · Zbl 1144.05300
[53] Meurman, A., Annihilating ideals of standard modules of \(\text{sl}(2,\mathbf{C})^\sim\) and combinatorial identities, Adv. in Math., 177-240 (1987) · Zbl 0635.17006 · doi:10.1016/0001-8708(87)90008-9
[54] Misra, Kailash C., Realization of the level two standard \(\text{sl}(2k+1,\mathbf{C})^\sim \)-modules, Trans. Amer. Math. Soc., 295-309 (1989) · Zbl 0675.17008 · doi:10.2307/2001285
[55] Misra, Kailash C., Realization of the level one standard \(\tilde{C}_{2k+1} \)-modules, Trans. Amer. Math. Soc., 483-504 (1990) · Zbl 0713.17015 · doi:10.2307/2001570
[56] Mizoguchi, S., The structure of representation for the \(W_{(3)}\) minimal model, Internat. J. Modern Phys. A, 133-162 (1991) · Zbl 0736.17036 · doi:10.1142/S0217751X91000125
[57] Nakanishi, Tomoki, Nonunitary minimal models and RSOS models, Nuclear Phys. B, 745-766 (1990) · doi:10.1016/0550-3213(90)90320-D
[58] Paule, Peter, On identities of the Rogers-Ramanujan type, J. Math. Anal. Appl., 255-284 (1985) · Zbl 0582.10008 · doi:10.1016/0022-247X(85)90368-3
[59] Rogers, L. J., Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc., 318-343 (1893/94) · doi:10.1112/plms/s1-25.1.318
[60] L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. (2) 16 (1917), 315-336. · JFM 46.0109.01
[61] L. J. Rogers and S. Ramanujan, Proof of certain identities in combinatory analysis, Proc. Cambridge Philos. Soc. 19 (1919), 211-216. · JFM 47.0903.01
[62] Schilling, Anne, Multinomials and polynomial bosonic forms for the branching functions of the \(\widehat{\text{su}}(2)_M\times \widehat{\text{su}}(2)_N/\widehat{\text{su}}(2)_{M+N}\) conformal coset models, Nuclear Phys. B, 247-271 (1996) · Zbl 1002.81546 · doi:10.1016/0550-3213(96)00103-4
[63] I. J. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbr\"uche, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1917), 302-321. · JFM 46.0201.01
[64] Sills, Andrew V., An invitation to the Rogers-Ramanujan identities, xx+233 pp. (2018), CRC Press, Boca Raton, FL · Zbl 1429.11002
[65] Stoyanovski\u{\i }, A. V., Functional models of the representations of current algebras, and semi-infinite Schubert cells, Funct. Anal. Appl.. Funktsional. Anal. i Prilozhen., 68-90, 96 (1994) · Zbl 0905.17030 · doi:10.1007/BF01079010
[66] Tingley, Peter, Three combinatorial models for \(\widehat{\text{sl}}_n\) crystals, with applications to cylindric plane partitions, Int. Math. Res. Not. IMRN, Art. ID rnm143, 40 pp. (2008) · Zbl 1233.17019
[67] Wakimoto, Minoru, Lectures on infinite-dimensional Lie algebra, x+444 pp. (2001), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 1159.17311 · doi:10.1142/9789812810700
[68] Warnaar, S. Ole, Algebraic combinatorics and applications. 50 years of Bailey’s lemma, 333-347 (1999), Springer, Berlin · Zbl 0972.11003
[69] Warnaar, S. Ole, Hall-Littlewood functions and the \(A_2\) Rogers-Ramanujan identities, Adv. Math., 403-434 (2006) · Zbl 1090.05072 · doi:10.1016/j.aim.2004.12.001
[70] T. A. Welsh, Unpublished, 2021.
[71] Zamolodchikov, A. B., Infinite extra symmetries in two-dimensional conformal quantum field theory, Teoret. Mat. Fiz., 347-359 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.