×

An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems. (English) Zbl 1517.90080

Summary: We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography, and economics. To solve these generally large-scale LP problems efficiently, we design an implementable inexact entropic proximal point algorithm (iEPPA) combined with an easy-to-implement dual block coordinate descent method as a subsolver. Unlike existing entropy-type proximal point algorithms, our iEPPA employs a more practically checkable stopping condition for solving the associated subproblems while achieving provable convergence. Moreover, when solving the capacity constrained multi-marginal optimal transport (CMOT) problem (a special case of our LP problem), our iEPPA is able to bypass the underlying numerical instability issues that often appear in the popular entropic regularization approach, since our algorithm does not require the proximal parameter to be very small in order to obtain an accurate approximate solution. Numerous numerical experiments show that our iEPPA is efficient and robust for solving some large-scale CMOT problems on synthetic data. The preliminary experiments on the discrete tomography problem also highlight the potential modeling capability of our model.

MSC:

90C05 Linear programming
90C06 Large-scale problems in mathematical programming

References:

[1] Abraham, I.; Abraham, R.; Bergounioux, M.; Carlier, G., Tomographic reconstruction from a few views: a multi-marginal optimal transport approach, Appl. Math. Optim., 75, 1, 55-73 (2017) · Zbl 1456.49035 · doi:10.1007/s00245-015-9323-3
[2] Bergounioux, M.; Abraham, I.; Abraham, R.; Carlier, G.; Le Pennec, E.; Trélat, E., Variational methods for tomographic reconstruction with few views, Milan J. Math., 86, 2, 157-200 (2018) · Zbl 1408.49020 · doi:10.1007/s00032-018-0285-1
[3] Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary tomography by iterating linear programs. In: Geometric Properties For Incomplete Data, pp. 183-197 (2006)
[4] Holý, V., Šafr, K.: Disaggregating input-output tables by the multidimensional RAS method: a case study of the Czech Republic. In: To appear in Economic Systems Research (2022)
[5] Grandy, A.; Veraart, L., Bayesian methodology for systemic risk assessment in financial networks, Manage. Sci., 63, 3999-4446 (2017)
[6] Korman, J.; McCann, RJ, Insights into capacity-constrained optimal transport, Proc. Natl. Acad. Sci., 110, 25, 10064-10067 (2013) · doi:10.1073/pnas.1221333110
[7] Korman, J.; McCann, RJ, Optimal transportation with capacity constraints, Trans. Am. Math. Soc., 367, 3, 1501-1521 (2015) · Zbl 1305.90065 · doi:10.1090/S0002-9947-2014-06032-7
[8] Levin, VL, The problem of mass transfer in a topological space and probability measures with given marginal measures on the product of two spaces, Dokl. Akad. Nauk SSSR, 276, 5, 1059-1064 (1984)
[9] Kennington, J.; Shalaby, M., An effective subgradient procedure for minimal cost multicommodity flow problems, Manage. Sci., 23, 9, 994-1004 (1977) · Zbl 0366.90118 · doi:10.1287/mnsc.23.9.994
[10] Benamou, J-D; Carlier, G.; Cuturi, M.; Nenna, L.; Peyré, G., Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., 37, 2, 1111-1138 (2015) · Zbl 1319.49073 · doi:10.1137/141000439
[11] Bauschke, HH; Lewis, AS, Dykstra’s algorithm with Bregman projections: a convergence proof, Optimization, 48, 4, 409-427 (2000) · Zbl 0992.90052 · doi:10.1080/02331930008844513
[12] Dykstra, RL, An algorithm for restricted least squares regression, J. Am. Stat. Assoc., 78, 384, 837-842 (1983) · Zbl 0535.62063 · doi:10.1080/01621459.1983.10477029
[13] Sinkhorn, R., Diagonal equivalence to matrices with prescribed row and column sums, Am. Math. Mon., 74, 4, 402-405 (1967) · Zbl 0166.03702 · doi:10.2307/2314570
[14] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292-2300 (2013)
[15] Peyré, G.; Cuturi, M., Computational optimal transport, Found. Trends Mach. Learn., 11, 5-6, 355-607 (2019) · Zbl 1475.68011 · doi:10.1561/2200000073
[16] Censor, Y.; Zenios, SA, Proximal minimization algorithm with \(D\)-functions, J. Optim. Theory Appl., 73, 3, 451-464 (1992) · Zbl 0794.90058 · doi:10.1007/BF00940051
[17] Chen, G.; Teboulle, M., Convergence analysis of a proximal-like minimization algorithm using Bregman functions, SIAM J. Optim., 3, 3, 538-543 (1993) · Zbl 0808.90103 · doi:10.1137/0803026
[18] Eckstein, J., Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, Math. Oper. Res., 18, 1, 202-226 (1993) · Zbl 0807.47036 · doi:10.1287/moor.18.1.202
[19] Eckstein, J., Approximate iterations in Bregman-function-based proximal algorithms, Math. Program., 83, 1-3, 113-123 (1998) · Zbl 0920.90117 · doi:10.1007/BF02680553
[20] Auslender, A.; Haddou, M., An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math. Program., 71, 1, 77-100 (1995) · Zbl 0855.90095 · doi:10.1007/BF01592246
[21] Eggermont, PPB, Multiplicative iterative algorithms for convex programming, Linear Algebra Appl., 130, 25-42 (1990) · Zbl 0715.65037 · doi:10.1016/0024-3795(90)90204-P
[22] Iusem, AN; Svaiter, BF; Teboulle, M., Entropy-like proximal methods in convex programming, Math. Oper. Res., 19, 4, 790-814 (1994) · Zbl 0821.90092 · doi:10.1287/moor.19.4.790
[23] Iusem, AN; Teboulle, M., Convergence rate analysis of nonquadratic proximal methods for convex and linear programming, Math. Oper. Res., 20, 3, 657-677 (1995) · Zbl 0845.90099 · doi:10.1287/moor.20.3.657
[24] Teboulle, M., Entropic proximal mappings with applications to nonlinear programming, Math. Oper. Res., 17, 3, 670-690 (1992) · Zbl 0766.90071 · doi:10.1287/moor.17.3.670
[25] Teboulle, M., Convergence of proximal-like algorithms, SIAM J. Optim., 7, 4, 1069-1083 (1997) · Zbl 0890.90151 · doi:10.1137/S1052623495292130
[26] Luo, Z-Q; Tseng, P., On the convergence of the coordinate descent method for convex differentiable minimization, J. Optim. Theory Appl., 72, 1, 7-35 (1992) · Zbl 0795.90069 · doi:10.1007/BF00939948
[27] Luo, Z-Q; Tseng, P., On the convergence rate of dual ascent methods for linearly constrained convex minimization, Math. Oper. Res., 18, 4, 846-867 (1993) · Zbl 0804.90103 · doi:10.1287/moor.18.4.846
[28] Tseng, P., Dual coordinate ascent methods for non-strictly convex minimization, Math. Program., 59, 1-3, 231-247 (1993) · Zbl 0782.90073 · doi:10.1007/BF01581245
[29] Xie, Y., Wang, X., Wang, R., Zha, H.: A fast proximal point method for computing exact Wasserstein distance. In: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference, pp. 433-453 (2020)
[30] Rockafellar, RT, Convex analysis (1970), Princeton: Princeton University Press, Princeton · Zbl 0193.18401 · doi:10.1515/9781400873173
[31] Bregman, LM, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7, 3, 200-217 (1967) · Zbl 0186.23807 · doi:10.1016/0041-5553(67)90040-7
[32] Rockafellar, RT; Wets, RJ-B, Variational analysis (1998), Heidelberg: Springer, Heidelberg · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
[33] Censor, Y.; Lent, A., An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34, 3, 321-353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676
[34] Bauschke, HH; Borwein, JM, Legendre functions and the method of random Bregman projections, J. Convex Anal., 4, 1, 27-67 (1997) · Zbl 0894.49019
[35] Polyak, BT, Introduction to optimization (1987), New York: Optimization Software Inc., New York · Zbl 0625.62093
[36] Tibshirani, R.J.: Dykstra’s algorithm, ADMM, and coordinate descent: Connections, insights, and extensions. In: Advances in Neural Information Processing Systems, pp. 517-528 (2017)
[37] Hoffman, AJ, On approximate solutions of systems of linear inequalities, J. Res. Natl. Bur. Stand., 49, 4, 263-265 (1952) · doi:10.6028/jres.049.027
[38] Lin, T.; Ho, N.; Cuturi, M.; Jordan, MI, On the complexity of approximating multimarginal optimal transport, J. Mach. Learn. Res., 23, 1-43 (2022)
[39] Altschuler, J., Weed, J., Rigollet, P.: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration. In: Advances in Neural Information Processing Systems, 30 (2017)
[40] Bertsimas, D.; Tsitsiklis, JN, Introduction to linear optimization (1997), MIT: Athena Scientific, MIT
[41] Nielsen, SS; Zenios, SA, Massively parallel proximal algorithms for solving linear stochastic network programs, The Int. J. Supercomput. Appl., 7, 4, 349-364 (1993)
[42] Nielsen, SS; Zenios, SA, Solving multistage stochastic network programs on massively parallel computers, Math. Program., 73, 3, 227-250 (1996) · Zbl 0852.90111 · doi:10.1007/BF02592213
[43] Ruszczyński, A., Nonlinear optimization (2006), Princeton: Princeton University Press, Princeton · Zbl 1108.90001 · doi:10.1515/9781400841059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.