×

A deep learning approach to the probabilistic numerical solution of path-dependent partial differential equations. (English) Zbl 1517.65009

Summary: Recent work on path-dependent partial differential equations (PPDEs) has shown that PPDE solutions can be approximated by a probabilistic representation, implemented in the literature by the estimation of conditional expectations using regression. However, a limitation of this approach is to require the selection of a basis in a function space. In this paper, we overcome this limitation by the use of deep learning methods, and we show that this setting allows for the derivation of error bounds on the approximation of conditional expectations. Numerical examples based on a two-person zero-sum game, as well as on Asian and barrier option pricing, are presented. In comparison with other deep learning approaches, our algorithm appears to be more accurate, especially in large dimensions.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
68T07 Artificial neural networks and deep learning
91G20 Derivative securities (option pricing, hedging, etc.)
91G60 Numerical methods (including Monte Carlo methods)

Software:

Adam; DGM

References:

[1] Alanko, S.; Avellaneda, M., Reducing variance in the numerical solution of BSDEs, C. R. Math. Acad. Sci. Paris, 351, 3-4, 135-138 (2013) · Zbl 1269.65004 · doi:10.1016/j.crma.2013.02.010
[2] Beck, C.; Becker, S.; Cheridito, P.; Jentzen, A.; Neufeld, A., Deep splitting method for parabolic PDEs, SIAM J. Sci. Comput., 43, 5, A3135-A3154 (2021) · Zbl 1501.65054 · doi:10.1137/19M1297919
[3] Becker, S.; Braunwarth, R.; Hutzenthaler, M.; Jentzen, A.; von Wurstemberger, Ph, Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations, Commun. Comput. Phys., 28, 5, 2109-2138 (2020) · Zbl 1473.65251 · doi:10.4208/cicp.OA-2020-0130
[4] Beck, C., E, W., Jentzen, A: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29(4), 1563-1619 (2019) · Zbl 1442.91116
[5] Dupire, B.: Functional Itô calculus (2009). Available at SSRN: https://ssrn.com/abstract=1435551 or doi:10.2139/ssrn.1435551 · Zbl 1420.91458
[6] E, W., Hutzenthaler, M., Jentzen, A., Kruse T.: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. J. Sci. Comput. 79, 1534-1571 (2019) · Zbl 1418.65149
[7] Ekren, I.; Keller, Ch; Touzi, N.; Zhang, J., On viscosity solutions of path dependent PDEs, Ann. Probab., 42, 1, 204-236 (2014) · Zbl 1320.35154 · doi:10.1214/12-AOP788
[8] Ekren, I.; Touzi, N.; Zhang, J., Viscosity solutions of fully nonlinear parabolic path dependent PDEs: part I, Ann. Probab., 44, 2, 1212-1253 (2016) · Zbl 1375.35250 · doi:10.1214/14-AOP999
[9] Ekren, I.; Touzi, N.; Zhang, J., Viscosity solutions of fully nonlinear parabolic path dependent PDEs: part II, Ann. Probab., 44, 4, 2507-2553 (2016) · Zbl 1394.35228 · doi:10.1214/15-AOP1027
[10] Feng, Q.; Luo, M.; Zhang, Z., Deep signature FBSDE algorithm, Numer. Algebra Control Optim., 13, 500-522 (2023) · Zbl 1517.65007 · doi:10.3934/naco.2022028
[11] Fahim, A.; Touzi, N.; Warin, X., A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 21, 4, 1322-1364 (2011) · Zbl 1230.65009 · doi:10.1214/10-AAP723
[12] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256 (2010)
[13] Gobet, E.; Lemor, J-Ph; Warin, X., A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab., 15, 3, 2172-2202 (2005) · Zbl 1083.60047 · doi:10.1214/105051605000000412
[14] Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505-8510 (2018) · Zbl 1416.35137
[15] Hornik, K., Approximation capabilities of multilayer feedforward networks, Neural Netw., 4, 2, 251-257 (1991) · doi:10.1016/0893-6080(91)90009-T
[16] Huré, C.; Pham, H.; Warin, X., Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comput., 89, 324, 1547-1579 (2020) · Zbl 1440.60063 · doi:10.1090/mcom/3514
[17] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on machine learning, pp. 448-456 (2015)
[18] Jacquier, A., Oumgari, M.: Deep curve-dependent PDEs for affine rough volatility (2019). arXiv:1906.02551 · Zbl 1516.91062
[19] Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980
[20] Lapeyre, B.; Lelong, J., Neural network regression for Bermudan option pricing, Monte Carlo Methods Appl., 27, 3, 227-247 (2021) · Zbl 1476.62205 · doi:10.1515/mcma-2021-2091
[21] Lefebvre, W., Loeper, G., Pham, H.: Differential learning methods for solving fully nonlinear PDEs (2022). arXiv:2205.09815
[22] Peng, S.: Note on viscosity solution of path-dependent PDE and \(g\)-martingales (2011). arXiv:1106.1144
[23] Privault, N.: An extension of stochastic calculus to certain non-Markovian processes. Prépublication 49, Université d’Evry (1997). https://www.maths.univ-evry.fr/prepubli/49.ps
[24] Privault, N., Introduction to stochastic finance with market examples. Financial mathematics series (2022), London: Chapman & Hall/CRC, London
[25] Pham, H., Warin, X., Germain, M.: Neural networks-based backward scheme for fully nonlinear PDEs. Partial Differ. Equ. Appl. 2(1), Paper No. 16, 24 (2021) · Zbl 1538.65259
[26] Rogers, LCG; Shi, Z., The value of an Asian option, J. Appl. Probab., 32, 4, 1077-1088 (1995) · Zbl 0839.90013 · doi:10.2307/3215221
[27] Ren, Z.; Tan, X., On the convergence of monotone schemes for path-dependent PDEs, Stoch. Process. Appl., 127, 6, 1738-1762 (2017) · Zbl 1377.65077 · doi:10.1016/j.spa.2016.10.002
[28] Ren, Z.; Touzi, N.; Zhang, J., Comparison of viscosity solutions of fully nonlinear degenerate parabolic path-dependent PDEs, SIAM J. Math. Anal., 49, 5, 4093-4116 (2017) · Zbl 1516.35194 · doi:10.1137/16M1090338
[29] Sirignano, J.; Spiliopoulos, K., DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[30] Sabate-Vidales, M., Šiška, D., Szpruch, L.: Solving path dependent PDEs with LSTM networks and path signatures (2020). arXiv:2011.10630 · Zbl 1497.91340
[31] Saporito, YF; Zhang, Z., Path-dependent deep Galerkin method: a neural network approach to solve path-dependent partial differential equations, SIAM J. Financ. Math., 12, 3, 912-940 (2021) · Zbl 1471.91621 · doi:10.1137/20M1329597
[32] Tang, S.; Zhang, F., Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations, Discrete Contin. Dyn. Syst., 35, 11, 5521-5553 (2015) · Zbl 1332.93384 · doi:10.3934/dcds.2015.35.5521
[33] Viens, F., Zhang, J.: A martingale approach for fractional Brownian motions and related path dependent PDEs. Ann. Appl. Probab. 29(6), 3489-3540 (2019) · Zbl 1441.60031
[34] Zhang, J.; Zhuo, J., Monotone schemes for fully nonlinear parabolic path dependent PDEs, J. Financ. Eng., 1, 1, 1450005 (2014) · doi:10.1142/S2345768614500056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.