×

Linking representations for multivariate extremes via a limit set. (English) Zbl 1517.62062

Summary: The study of multivariate extremes is dominated by multivariate regular variation, although it is well known that this approach does not provide adequate distinction between random vectors whose components are not always simultaneously large. Various alternative dependence measures and representations have been proposed, with the most well-known being hidden regular variation and the conditional extreme value model. These varying depictions of extremal dependence arise through consideration of different parts of the multivariate domain, and particularly through exploring what happens when extremes of one variable may grow at different rates from other variables. Thus far, these alternative representations have come from distinct sources, and links between them are limited. In this work we elucidate many of the relevant connections through a geometrical approach. In particular, the shape of the limit set of scaled sample clouds in light-tailed margins is shown to provide a description of several different extremal dependence representations.

MSC:

62G32 Statistics of extreme values; tail inference
60G70 Extreme value theory; extremal stochastic processes

References:

[1] Abdous, B., Fougères, A.-L. and Ghoudi, K. (2005). Extreme behaviour for bivariate elliptical distributions. Canad. J. Statist.33, 317-334. · Zbl 1096.62053
[2] Balkema, A. A., Embrechts, P. and Nolde, N. (2010). Meta densities and the shape of their sample clouds. J. Multivariate Anal.101, 1738-1754. · Zbl 1198.60012
[3] Balkema, G. and Embrechts, P. (2007). High Risk Scenarios and Extremes: A Geometric Approach.European Mathematical Society, Zurich. · Zbl 1121.91055
[4] Balkema, G. and Nolde, N. (2010). Asymptotic independence for unimodal densities. Adv. Appl. Prob.42, 411-432. · Zbl 1239.60007
[5] Balkema, G. and Nolde, N. (2012). Asymptotic dependence for homothetic light-tailed densities. Adv. Appl. Prob.44, 506-527. · Zbl 1255.60082
[6] Balkema, G. and Nolde, N. (2020). Samples with a limit shape, multivariate extremes, and risk. Adv. Appl. Prob.52, 491-522. · Zbl 1473.60085
[7] Bedford, T. and Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intellig.32, 245-268. · Zbl 1314.62040
[8] Bedford, T. and Cooke, R. M. (2002). Vines: a new graphical model for dependent random variables. Ann. Statist.30, 1031-1068. · Zbl 1101.62339
[9] Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. L. (2004). Statistics of Extremes: Theory and Applications. John Wiley, New York. · Zbl 1070.62036
[10] Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. J. R. Statist. Soc. B53, 377-392. · Zbl 0800.60020
[11] Das, B. and Resnick, S. I. (2011). Conditioning on an extreme component: model consistency with regular variation on cones. Bernoulli17, 226-252. · Zbl 1284.60103
[12] Davis, R. A., Mulrow, E. and Resnick, S. I. (1988). Almost sure limit sets of random samples in \(\mathbb{R}^d\) . Adv. Appl. Prob.20, 573-599. · Zbl 0656.60026
[13] De Haan, L. (1970). On Regular Variation and Its Application to Weak Convergence of Sample Extremes. Mathematisch Centrum, Amsterdam. · Zbl 0226.60039
[14] De Valk, C. (2016). Approximation and estimation of very small probabilities of multivariate extreme events. Extremes19, 687-717. · Zbl 1349.60037
[15] De Valk, C. (2016). Approximation of high quantiles from intermediate quantiles. Extremes19, 661-686. · Zbl 1349.60085
[16] Engelke, S. and Hitz, A. S. (2020). Graphical models for extremes (with discussion). J. R. Statist. Soc. B82, 871-932. · Zbl 07554779
[17] Engelke, S., Opitz, T. and Wadsworth, J. (2019). Extremal dependence of random scale constructions. Extremes22, 623-666. · Zbl 1427.60097
[18] Fisher, L. (1969). Limiting sets and convex hulls of samples from product measures. Ann. Math. Statist.40, 1824-1832. · Zbl 0183.47501
[19] Fougères, A.-L. and Soulier, P. (2010). Limit conditional distributions for bivariate vectors with polar representation. Stoch. Models26, 54-77. · Zbl 1195.60025
[20] Geffroy, J. (1958). Contribution à la théorie des valeurs extrêmes. Publ. Inst. Statist. Univ. Paris VII, 37-121.
[21] Geffroy, J. (1959). Contribution à la théorie des valeurs extrêmes (deuxième partie). Publ. Inst. Statist. Univ. Paris VIII, 3-65. · Zbl 0092.34901
[22] Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math.44, 423-453. · Zbl 0063.01643
[23] Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris9, 171-173. · Zbl 0093.15303
[24] Heffernan, J. E. and Resnick, S. I. (2007). Limit laws for random vectors with an extreme component. Ann. Appl. Prob.17, 537-571. · Zbl 1125.60049
[25] Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values (with discussion). J. R. Statist. Soc. B66, 497-546. · Zbl 1046.62051
[26] Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. J. Amer. Statist. Assoc.114, 434-444. · Zbl 1478.62277
[27] Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: between independence and complete dependence. Statist. Prob. Lett.7, 283-286. · Zbl 0679.62038
[28] Joe, H. (1996). Families of m-variate distributions with given margins and \(m(m-1)/2\) bivariate dependence parameters. In Distributions with Fixed Marginals and Related Topics (Lecture Notes—Monogr. Ser. Vol. 28), Institute of Mathematical Statistics, Hayward, CA, pp. 120-141.
[29] Keef, C., Papastathopoulos, I. and Tawn, J. A. (2013). Estimation of the conditional distribution of a multivariate variable given that one of its components is large: additional constraints for the Heffernan and Tawn model. J. Multivariate Anal.115, 396-404. · Zbl 1259.62014
[30] Kinoshita, K. and Resnick, S. I. (1991). Convergence of scaled random samples in \(\mathbb{R}^d\) . Ann. Prob.19, 1640-1663. · Zbl 0746.60030
[31] Kulik, R. and Soulier, P. (2020). Heavy-Tailed Time Series. Springer, New York. · Zbl 1457.62003
[32] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York. · Zbl 0518.60021
[33] Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika83, 169-187. · Zbl 0865.62040
[34] Ledford, A. W. and Tawn, J. A. (1997). Modelling dependence within joint tail regions. J. R. Statist. Soc. B59, 475-499. · Zbl 0886.62063
[35] Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York. · Zbl 0321.60009
[36] Nolde, N. (2014). Geometric interpretation of the residual dependence coefficient. J. Multivariate Anal.123, 85-95. · Zbl 1360.60100
[37] Ramos, A. and Ledford, A. (2009). A new class of models for bivariate joint tails. J. R. Statist. Soc. B71, 219-241. · Zbl 1231.62093
[38] Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York. · Zbl 0633.60001
[39] Resnick, S. (2002). Hidden regular variation, second order regular variation and asymptotic independence. Extremes5, 303-336. · Zbl 1035.60053
[40] Resnick, S. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.Springer, New York. · Zbl 1152.62029
[41] Seifert, M. I. (2014). On conditional extreme values of random vectors with polar representation. Extremes17, 193-219. · Zbl 1311.60060
[42] Simpson, E. S., Wadsworth, J. L. and Tawn, J. A. (2020). Determining the dependence structure of multivariate extremes. Biometrika107, 513-532. · Zbl 1451.62059
[43] Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika77, 245-253. · Zbl 0716.62051
[44] Wadsworth, J. and Tawn, J. (2013). A new representation for multivariate tail probabilities. Bernoulli19, 2689-2714. · Zbl 1284.60107
[45] Wadsworth, J. and Tawn, J. (2019). Higher-dimensional spatial extremes via single-site conditioning. Preprint. Available at https://arxiv.org/abs/1912.06560.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.