×

A unified approach to shape and topological sensitivity analysis of discretized optimal design problems. (English) Zbl 1517.49026

Summary: We introduce a unified sensitivity concept for shape and topological perturbations and perform the sensitivity analysis for a discretized PDE-constrained design optimization problem in two space dimensions. We assume that the design is represented by a piecewise linear and globally continuous level set function on a fixed finite element mesh and relate perturbations of the level set function to perturbations of the shape or topology of the corresponding design. We illustrate the sensitivity analysis for a problem that is constrained by a reaction-diffusion equation and draw connections between our discrete sensitivities and the well-established continuous concepts of shape and topological derivatives. Finally, we verify our sensitivities and illustrate their application in a level-set-based design optimization algorithm where no distinction between shape and topological updates has to be made.

MSC:

49Q12 Sensitivity analysis for optimization problems on manifolds
49Q10 Optimization of shapes other than minimal surfaces
65K10 Numerical optimization and variational techniques
35K57 Reaction-diffusion equations

Software:

CutFEM

References:

[1] Allaire, G.; Jouve, F.; Bendsøe, MP; Olhoff, N.; Sigmund, O., Coupling the level set method and the topological gradient in structural optimization, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, 3-12 (2006), Dordrecht: Springer, Dordrecht · doi:10.1007/1-4020-4752-5_1
[2] Allaire, G.; Jouve, F.; Toader, AM, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368 · doi:10.1016/j.jcp.2003.09.032
[3] Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49(1,2), 87-108 (2006) · Zbl 1187.49036
[4] Amstutz, S.; Andrä, H., A new algorithm for topology optimization using a level-set method, J. Comput. Phys., 216, 2, 573-588 (2006) · Zbl 1097.65070 · doi:10.1016/j.jcp.2005.12.015
[5] Amstutz, S.; Gangl, P., Topological derivative for the nonlinear magnetostatic problem, Electron. Trans. Numer. Anal., 51, 169-218 (2019) · Zbl 1425.35051 · doi:10.1553/etna_vol51s169
[6] Amstutz, S.; Dapogny, C.; Ferrer, À., A consistent relaxation of optimal design problems for coupling shape and topological derivatives, Numer. Math., 140, 1, 35-94 (2018) · Zbl 1393.74145 · doi:10.1007/s00211-018-0964-4
[7] Bendsoe, M.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2003), Berlin: Springer, Berlin · Zbl 1059.74001
[8] Berggren, M.: Shape calculus for fitted and unfitted discretizations: domain transformations vs. boundary-face dilations. (2022). doi:10.48550/ARXIV.2210.10411
[9] Bernland, A.; Wadbro, E.; Berggren, M., Acoustic shape optimization using cut finite elements, Int. J. Numer. Methods Eng., 113, 3, 432-449 (2018) · Zbl 07874303 · doi:10.1002/nme.5621
[10] Burger, M.; Hackl, B.; Ring, W., Incorporating topological derivatives into level set methods, J. Comput. Phys., 194, 1, 344-362 (2004) · Zbl 1044.65053 · doi:10.1016/j.jcp.2003.09.033
[11] Burman, E.; Claus, S.; Hansbo, P.; Larson, MG; Massing, A., Cutfem: discretizing geometry and partial differential equations, Int. J. Numer. Meth. Eng., 104, 7, 472-501 (2015) · Zbl 1352.65604 · doi:10.1002/nme.4823
[12] Dapogny, C., Feppon, F.: Shape optimization using a level set based mesh evolution method: an overview and tutorial (2022). https://hal.science/hal-03881641
[13] Delfour, MC, Topological derivative: a semidifferential via the Minkowski content, J. Convex Anal., 25, 3, 957-982 (2018) · Zbl 1410.49051
[14] Delfour, MC, Topological derivatives via one-sided derivative of parametrized minima and minimax, Eng. Comput., 39, 1, 34-59 (2022) · doi:10.1108/EC-06-2021-0318
[15] Delfour, M.C., Zolésio, J.P.: Shapes and geometries: metrics, analysis, differential calculus, and optimization. In: Advances in Design and Control, vol. 22, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011) · Zbl 1251.49001
[16] Fike, J., Alonso, J.: The development of hyper-dual numbers for exact second-derivative calculations. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 886 (2011)
[17] Gangl, P., A multi-material topology optimization algorithm based on the topological derivative, Comput. Methods Appl. Mech. Eng., 366 (2020) · Zbl 1442.74168 · doi:10.1016/j.cma.2020.113090
[18] Gangl, P., Sturm, K.: A simplified derivation technique of topological derivatives for quasi-linear transmission problems. ESAIM 26, 106 (2020) · Zbl 1459.49027
[19] Gangl, P.; Langer, U.; Laurain, A.; Meftahi, H.; Sturm, K., Shape optimization of an electric motor subject to nonlinear magnetostatics, SIAM J. Sci. Comput., 37, 6, B1002-B1025 (2015) · Zbl 1330.49042 · doi:10.1137/15100477X
[20] Hägg, L.; Wadbro, E., On minimum length scale control in density based topology optimization, Struct. Multidiscip. Optim., 58, 3, 1015-1032 (2018) · doi:10.1007/s00158-018-1944-0
[21] Haubner, J.; Siebenborn, M.; Ulbrich, M., A continuous perspective on shape optimization via domain transformations, SIAM J. Sci. Comput., 43, 3, A1997-A2018 (2021) · Zbl 1469.35252 · doi:10.1137/20M1332050
[22] Laurain, A., Analyzing smooth and singular domain perturbations in level set methods, SIAM J. Math. Anal., 50, 4, 4327-4370 (2018) · Zbl 1396.49042 · doi:10.1137/17M1118956
[23] Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applications. ESAIM 50(4), 1241-1267 (2016) · Zbl 1347.49070
[24] Martins, JR; Sturdza, P.; Alonso, JJ, The complex-step derivative approximation, ACM Trans. Math. Softw., 29, 3, 245-262 (2003) · Zbl 1072.65027 · doi:10.1145/838250.838251
[25] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng., 46, 1, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[26] Novotny, A.; Sokolowski, J., Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics (2013), Heidelberg: Springer, Heidelberg · Zbl 1276.35002 · doi:10.1007/978-3-642-35245-4
[27] Novotny, A.; Feijóo, R.; Taroco, E.; Padra, C., Topological sensitivity analysis, Comput. Methods Appl. Mech. Eng., 192, 7, 803-829 (2003) · Zbl 1025.74025 · doi:10.1016/S0045-7825(02)00599-6
[28] Novotny, A.; Feijóo, R.; Taroco, E.; Padra, C.; Bendsøe, MP; Olhoff, N.; Sigmund, O., Topological-shape sensitivity method: theory and applications, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, 469-478 (2006), Dordrecht: Springer, Dordrecht · doi:10.1007/1-4020-4752-5_45
[29] Sigmund, O.; Maute, K., Topology optimization approaches, Struct. Multidiscip. Optim., 48, 6, 1031-1055 (2013) · doi:10.1007/s00158-013-0978-6
[30] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM J. Control. Optim., 37, 4, 1251-1272 (1999) · Zbl 0940.49026 · doi:10.1137/S0363012997323230
[31] Sturm, K., Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption, SIAM J. Control. Optim., 53, 4, 2017-2039 (2015) · Zbl 1327.49073 · doi:10.1137/130930807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.