×

Operators which preserve a positive definite inner product. (English) Zbl 1517.47034

Summary: Let \(\mathcal{H}\) be a Hilbert space, \(A\) a positive definite operator in \(\mathcal{H}\) and \(\langle f,g\rangle_A=\langle Af,g\rangle\), \(f, g\in \mathcal{H}\), the \(A\)-inner product. This paper studies the geometry of the set \[ \mathcal{I}_A^a:=\{\text{adjointable isometries for } \langle\ ,\ \rangle_A\}. \] It is proved that \(\mathcal{I}_A^a\) is a submanifold of the Banach algebra of adjointable operators, and a homogeneous space of the group of invertible operators in \(\mathcal{H}\) which are unitaries for the \(A\)-inner product. Smooth curves in \(\mathcal{I}_A^a\) with given initial conditions, which are minimal for the metric induced by \(\langle\ ,\ \rangle_A\), are presented. This result depends on an adaptation of M. G. Krein’s method for the lifting of symmetric contractions in order that it works also for symmetrizable transformations (i.e., operators which are selfadjoint for the \(A\)-inner product).

MSC:

47B02 Operators on Hilbert spaces (general)
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
47A62 Equations involving linear operators, with operator unknowns
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds

References:

[1] Ando, T., Unbounded or bounded idempotent operators in Hilbert space, Linear Algebra Appl., 438, 3769-3775 (2013) · Zbl 1297.47001 · doi:10.1016/j.laa.2011.06.047
[2] Andruchow, E.; Recht, L.; Varela, A., Metric geodesics of isometries in a Hilbert space and the extension problem, Proc. Am. Math. l Soc., 135, 2527-2537 (2007) · Zbl 1130.58005 · doi:10.1090/S0002-9939-07-08753-9
[3] Andruchow, E.; Chiumiento, E.; Larotonda, G., The group of \(L^2\) isometries in \(H_0^1\), Studia Math., 217, 193-217 (2013) · Zbl 1290.47042 · doi:10.4064/sm217-3-1
[4] Andruchow, E.; Chiumiento, E.; y Lucero, MDI, The compatible Grassmannian, Differ. Geom. Appl., 32, 1-27 (2014) · Zbl 1283.58009 · doi:10.1016/j.difgeo.2013.11.004
[5] Arsene, Gr; Gheondea, A., Completing matrix contractions, J. Oper. Theory, 7, 179-189 (1982) · Zbl 0504.47023
[6] Constantinescu, T.; Gheondea, A., Representations of Hermitian kernels by means of Krein spaces, Publ. Res. Inst. Math. Sci., 33, 917-951 (1997) · Zbl 0904.46016 · doi:10.2977/prims/1195144882
[7] Cojuhari, P.; Gheondea, A., On lifting of operators to Hilbert spaces induced by positive selfadjoint operators, J. Math. Anal. Appl., 304, 584-598 (2005) · Zbl 1092.46004 · doi:10.1016/j.jmaa.2004.09.048
[8] Corach, G.; Giribet, JI; Maestripieri, A., Sard’s approximation processes and oblique projections, Studia Math., 194, 65-80 (2009) · Zbl 1179.47015 · doi:10.4064/sm194-1-4
[9] Corach, G.; Maestripieri, A.; Stojanoff, D., Oblique projections and Schur complements, Acta Sci. Math. (Szeged), 67, 337-356 (2001) · Zbl 0980.47021
[10] Corach, G., Maestripieri, A., Stojanoff, D.: Generalized Schur complements and oblique projections, Linear Algebra Appl. 341 (2002), 259-272 (special issue), dedicated to Professor T. Ando · Zbl 1015.47014
[11] Davis, C.; Kahan, WM; Weinberger, HF, Norm preserving dilations and their applications to optimal error bounds, SIAM J. Numer. Anal., 19, 445-469 (1982) · Zbl 0491.47003 · doi:10.1137/0719029
[12] Dieudonné, J.: Quasi-hermitian operators. In: Proceedings of the International Symposium on Linear Spaces (Jerusalem, 1960), pp. 115-122. Jerusalem Academic Press, Jerusalem/Pergamon, Oxford (1961) · Zbl 0114.31601
[13] Dijksma, A., Langer, H., de Snoo, H.S.V.: Representations of holomorphic operator functions by means of resolvents of unitary or selfadjoint operators in Krein spaces. In: Operators in Indefinite Metric Spaces, Scattering Theory and Other Topics (Bucharest, 1985. Operator Theory: Advances and Applications, vol. 24), pp. 123-143. Birkhäuser, Basel (1987) · Zbl 0625.47010
[14] Douglas, RG, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Am. Math. Soc., 17, 413-415 (1966) · Zbl 0146.12503 · doi:10.1090/S0002-9939-1966-0203464-1
[15] Gohberg, IC; Zambickii, MK, On the theory of linear operators in spaces with two norms, Ukr. Mat. Zh., 18, 1, 11-23 (1966) · Zbl 0152.33603 · doi:10.1007/BF02537710
[16] Krein, MG, The theory of selfadjoint extensions of semibounded Hermitian operators and its applications, Ma. Sb. (N.S.), 29, 62, 431-495 (1947) · Zbl 0029.14103
[17] Krein, M.G.: Compact linear operators on functional spaces with two norms. In: Integral Equations and Operator Theory, vol. 30, pp. 140-162 (1998), translated from the Ukranian. Dedicated to the memory of Mark Grigorievich Krein (1907-1989) · Zbl 0914.47002
[18] Lax, PD, Symmetrizable linear transformations, Commun. Pure Appl. Math., 7, 633-647 (1954) · Zbl 0057.34402 · doi:10.1002/cpa.3160070403
[19] Nagy, B. Sz., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space, 2nd ed. Revised and enlarged edition. Universitext. Springer, New York (2010) · Zbl 1234.47001
[20] Parrott, S., On the quotient norm and the Sz.-Nagy Foias lifting theorem, J. Funct. Anal., 30, 311-328 (1978) · Zbl 0409.47004 · doi:10.1016/0022-1236(78)90060-5
[21] Riesz, F.; Sz-Nagy, B., Functional Analysis (1972), New York: Ungar, New York · Zbl 0070.10902
[22] Sard, A., Approximation and variance, Trans. Am. Math. Soc., 73, 428-446 (1952) · Zbl 0048.35502 · doi:10.1090/S0002-9947-1952-0052688-X
[23] Shmulyan, YuL; Yanovskaya, RN, Blocks of a contractive operator matrix. (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 7, 72-75 (1981) · Zbl 0473.47007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.