×

Zero entropy and stable rotation sets for monotone recurrence relations. (English) Zbl 1517.37027

Summary: In this paper, we show that each element in the convex hull of the rotation set of a compact invariant chain transitive set is realized by a Birkhoff solution, which is an improvement of the fundamental lemma of T. Zhou and W.-X. Qin [Math. Z. 297, No. 3–4, 1673–1692 (2021; Zbl 1465.37024)] in the study of rotation sets for monotone recurrence relations. We then investigate the properties of rotation sets assuming the system has zero topological entropy. The rotation set for a Birkhoff recurrence class is a singleton and the forward and backward rotation numbers are identical for each solution in the same Birkhoff recurrence class. We also show the continuity of rotation numbers on the set of non-wandering points. If the rotation set is upper-stable, then we show that each boundary point is a rational number, and we also obtain a result of bounded deviation.

MSC:

37B40 Topological entropy
37B65 Approximate trajectories, pseudotrajectories, shadowing and related notions for topological dynamical systems
37A30 Ergodic theorems, spectral theory, Markov operators

Citations:

Zbl 1465.37024
Full Text: DOI

References:

[1] Addas-Zanata, S.. Instability for the rotation set of homeomorphisms of the torus homotopic to the identity. Ergod. Th. & Dynam. Sys.24 (2004), 319-328. · Zbl 1065.37030
[2] Addas-Zanata, S.. Uniform bounds for diffeomorphisms of the torus and a conjecture of Boyland. J. Lond. Math. Soc. (2)91 (2015), 537-553. · Zbl 1348.37069
[3] Angenent, S.. Monotone recurrence relations, their Birkhoff orbits and topological entropy. Ergod. Th. & Dynam. Sys.10 (1990), 15-41. · Zbl 0667.58036
[4] Baesens, C. and Mackay, R. S.. Gradient dynamics of tilted Frenkel-Kontorova models. Nonlinearity11 (1998), 949-964. · Zbl 0906.58037
[5] Bamon, R., Malta, I. and Pacífico, M. J.. Changing rotation intervals of endomorphisms of the circle. Invent. Math.83 (1986), 257-264. · Zbl 0603.58036
[6] Bangert, V.. Mather sets for twist maps and geodesics on tori. Dynamics Reported. Vol. 1. Eds. Kirchgraber, U. and Walther, H. O.. Wiley, New York, 1988, pp. 1-56. · Zbl 0664.53021
[7] Barge, M. and Swanson, R.. Rotation shadowing properties of circle and annulus maps. Ergod. Th. & Dynam. Sys.8 (1988), 509-521. · Zbl 0682.58027
[8] Botelho, F.. Rotation sets of maps of the annulus. Pacific J. Math.133 (1988), 251-266. · Zbl 0622.58020
[9] Boyland, P. L.. The rotation set as a dynamical invariant. Twist Mappings and Their Applications(IMA Volumes in Mathematics, 44). Eds. Mcgehee, R. and Meyer, K. R.. Springer, New York, 1992, pp. 73-86. · Zbl 0764.58015
[10] Braun, O. M. and Kivshar, Y. S.. The Frenkel-Kontorova Model, Concepts, Methods, and Applications. Springer-Verlag, Berlin, 2004. · Zbl 1140.82001
[11] Conejeros, J. and Tal, F. A.. Applications of forcing theory to homeomorphisms of the closed annulus. Preprint, 2019, arXiv:1909.09881v1.
[12] Dávalos, P.. On annular maps of the torus and sublinear diffusion. J. Inst. Math. Jussieu17 (2018), 913-978. · Zbl 1396.37051
[13] Enrich, H., Guelman, N., Larcanché, A. and Liousse, I.. Diffeomorphisms having rotation sets with non-empty interior. Nonlinearity22 (2009), 1899-1907. · Zbl 1171.37319
[14] Franks, J.. Recurrence and fixed points of surface homeomorphisms. Ergod. Th. & Dynam. Sys.8 (1988), 99-107. · Zbl 0634.58023
[15] Golé, C.. Symplectic Twist Maps: Global Variational Techniques. World Scientific, Singapore, 2001. · Zbl 1330.37001
[16] Graham, R. L., Knuth, D. E. and Patashnik, O.. Concrete Mathematics, 2nd edn. Addison-Wesley, Reading, MA, 1994. · Zbl 0836.00001
[17] Guelman, N., Koropecki, A. and Tal, F. A.. A characterization of annularity for area-preserving toral homeomorphisms. Math. Z.276 (2014), 673-689. · Zbl 1347.37079
[18] Guihéneuf, P.-A. and Koropecki, A.. Stability of the rotation set of area-preaserving toral homeomorphisms. Nonlinearity30 (2017), 1089-1096. · Zbl 1380.37092
[19] Guo, L., Miao, X.-Q., Wang, Y.-N. and Qin, W.-X.. Positive topological entropy for monotone recurrence relations. Ergod. Th. & Dynam. Sys.35 (2015), 1880-1901. · Zbl 1352.37046
[20] Koropecki, A. and Tal, F. A.. Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion. Proc. Amer. Math. Soc.142 (2014), 3483-3490. · Zbl 1351.37177
[21] Koropecki, A. and Tal, F. A.. Bounded and unbounded behavior for area-preserving rational pseudo-rotations. Proc. Lond. Math. Soc. (3)109 (2014), 785-822. · Zbl 1352.37127
[22] Le Calvez, P.. Dynamical Properties of Diffeomorphisms of the Annulus and of the Torus(SMF/AMS Texts and Monographs, 4). American Mathematical Society, Providence, RI, 2000. · Zbl 1056.37055
[23] Le Calvez, P. and Tal, F.. Forcing theory for transverse trajectories of surface homeomorphisms. Invent. Math.212 (2018), 619-729. · Zbl 1390.37073
[24] Le Calvez, P. and Tal, F.. Topological horseshoes for surface homeomorphisms. Preprint, 2021, arXiv:1803.04557v2. · Zbl 1518.37054
[25] Llibre, J. and Mackay, R. S.. Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity. Ergod. Th. & Dynam. Sys.11 (1991), 115-128. · Zbl 0699.58049
[26] Mather, J. N.. Variational construction of orbits of twist diffeomorphisms. J. Amer. Math. Soc.4 (1991), 207-263. · Zbl 0737.58029
[27] Passeggi, A., Potrie, R. and Sambarino, M.. Rotation intervals and entropy on attracting annular continua. Geom. Topol.22 (2018), 2145-2186. · Zbl 1386.37042
[28] Salomão, G. S. and Tal, F. A.. Non-existence of sublinear diffusion for a class of torus homeomorphisms. Ergod. Th. & Dynam. Sys. doi: doi:10.1017/etds.2020.137. Published online 18 January 2021. · Zbl 1493.37052
[29] Zhou, T. and Qin, W.-X.. Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations. Math. Z.297 (2021), 1673-1692. · Zbl 1465.37024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.