×

Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups. (English) Zbl 1517.35101

Danielli, Donatella (ed.) et al., New developments in the analysis of nonlocal operators. AMS special session, University of St. Thomas, Minneapolis, MN, USA, October 28–30, 2016. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 723, 167-189 (2019).
Summary: In this paper we show novel underlying connections between fractional powers of the Laplacian on the unit sphere and functions from analytic number theory and differential geometry, like the Hurwitz zeta function and the Minakshisundaram zeta function. Inspired by S. Minakshisundaram’s ideas [J. Indian Math. Soc., New Ser. 13, 41–48 (1949; Zbl 0033.11605)], we find a precise pointwise description of \((-\Delta _{\mathbb{S}^{n-1}})^su(x)\) in terms of fractional powers of the Dirichlet-to-Neumann map on the sphere. The Poisson kernel for the unit ball will be essential for this part of the analysis. On the other hand, by using the heat semigroup on the sphere, additional pointwise integro-differential formulas are obtained. Finally, we prove a characterization with a local extension problem and the interior Harnack inequality.
For the entire collection see [Zbl 1416.35007].

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
47D06 One-parameter semigroups and linear evolution equations
11M35 Hurwitz and Lerch zeta functions
11M41 Other Dirichlet series and zeta functions
26A33 Fractional derivatives and integrals
35K08 Heat kernel
35R11 Fractional partial differential equations

Citations:

Zbl 0033.11605

Software:

DLMF

References:

[1] Alonso, Ricardo; Sun, Weiran, The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338, 3, 1233-1286 (2015) · Zbl 1319.35254 · doi:10.1007/s00220-015-2395-8
[2] Apostol, Tom M., Introduction to analytic number theory, xii+338 pp. (1976), Springer-Verlag, New York-Heidelberg · Zbl 1154.11300
[3] Caffarelli, Luis; Silvestre, Luis, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 7-9, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[4] Caffarelli, Luis A.; Stinga, Pablo Ra\'ul, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 33, 3, 767-807 (2016) · Zbl 1381.35211 · doi:10.1016/j.anihpc.2015.01.004
[5] Caffarelli, Luis A.; Vasseur, Alexis, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171, 3, 1903-1930 (2010) · Zbl 1204.35063 · doi:10.4007/annals.2010.171.1903
[6] Davies, E. B., Heat kernels and spectral theory, Cambridge Tracts in Mathematics 92, x+197 pp. (1989), Cambridge University Press, Cambridge · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[7] Fabes, Eugene B.; Kenig, Carlos E.; Serapioni, Raul P., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7, 1, 77-116 (1982) · Zbl 0498.35042 · doi:10.1080/03605308208820218
[8] Fine, N. J., Note on the Hurwitz zeta-function, Proc. Amer. Math. Soc., 2, 361-364 (1951) · Zbl 0043.07802 · doi:10.2307/2031757
[9] Folland, Gerald B., Introduction to partial differential equations, xii+324 pp. (1995), Princeton University Press, Princeton, NJ · Zbl 0841.35001
[10] Gal\'e, Jos\'e E.; Miana, Pedro J.; Stinga, Pablo Ra\'ul, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ., 13, 2, 343-368 (2013) · Zbl 1336.47049 · doi:10.1007/s00028-013-0182-6
[11] Lebedev, N. N., Special functions and their applications, Revised English edition. Translated and edited by Richard A. Silverman, xii+308 pp. (1965), Prentice-Hall, Inc., Englewood Cliffs, N.J. · Zbl 0131.07002
[12] Minakshisundaram, S., Zeta functions on the sphere, J. Indian Math. Soc. (N.S.), 13, 41-48 (1949) · Zbl 0033.11605
[13] NIST Digital Library of Mathematical Functions, version 1.0.15, last visited 08/30/2017. http://dlmf.nist.gov/.
[14] Roncal, Luz; Stinga, Pablo Ra\'ul, Fractional Laplacian on the torus, Commun. Contemp. Math., 18, 3, 1550033, 26 pp. (2016) · Zbl 1383.35246 · doi:10.1142/S0219199715500339
[15] Roncal, Luz; Stinga, Pablo Ra\'ul, Transference of fractional Laplacian regularity. Special functions, partial differential equations, and harmonic analysis, Springer Proc. Math. Stat. 108, 203-212 (2014), Springer, Cham · Zbl 1323.35201 · doi:10.1007/978-3-319-10545-1\_14
[16] Rubin, Boris, Fractional integrals and potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics 82, xiv+409 pp. (1996), Longman, Harlow · Zbl 0864.26004
[17] Samko, Stefan G., Hypersingular integrals and their applications, Analytical Methods and Special Functions 5, xviii+359 pp. (2002), Taylor & Francis, Ltd., London · Zbl 0998.42010
[18] Seeley, R. T., Spherical harmonics, Amer. Math. Monthly, 73, 4, 115-121 (1966) · Zbl 0142.03503 · doi:10.2307/2313760
[19] Silvestre, Luis, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 1, 67-112 (2007) · Zbl 1141.49035 · doi:10.1002/cpa.20153
[20] Stinga, Pablo Ra\'ul; Torrea, Jos\'e Luis, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations, 35, 11, 2092-2122 (2010) · Zbl 1209.26013 · doi:10.1080/03605301003735680
[21] Stinga, Pablo Ra\'ul; Zhang, Chao, Harnack’s inequality for fractional nonlocal equations, Discrete Contin. Dyn. Syst., 33, 7, 3153-3170 (2013) · Zbl 1274.35402 · doi:10.3934/dcds.2013.33.3153
[22] Zaslavsky, G. M., Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 6, 461-580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.