×

Efficient computation of Kubo conductivity for incommensurate 2D heterostructures. (English) Zbl 1516.82119

Summary: We introduce a numerical method for computing conductivity via the Kubo formula for incommensurate 2D bilayer heterostructures using a tight-binding framework. We begin by deriving the momentum space formulation and Kubo formula from the real space tight-binding model using the appropriate Bloch transformation operator. We further discuss the resulting algorithm along with its convergence rate and computational cost in terms of model parameters such as relaxation time and temperature. In particular, we show that for low frequencies, low temperature, and long relaxation times conductivity can be computed very efficiently using the momentum space algorithm for a wide class of materials. We then showcase our method by computing conductivity for twisted bilayer graphene (tBLG) for small twist angles.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
78A48 Composite media; random media in optics and electromagnetic theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P., Nature, 556, 43 (2018) · doi:10.1038/nature26160
[2] Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E., Phys. Rev. B, 95, 075420 (2017) · doi:10.1103/PhysRevB.95.075420
[3] Geim, A. K.; Grigorieva, I. V., Nature, 499, 419 (2013) · doi:10.1038/nature12385
[4] Castro Neto, A. H.; Guinea, F.; Peres, N. M.R.; Novoselov, K. S.; Geim, A. K., Rev. Mod. Phys., 81, 109 (2009) · doi:10.1103/RevModPhys.81.109
[5] Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M., Ann. Rev. Mater. Res., 45, 1 (2015) · doi:10.1146/annurev-matsci-070214-021034
[6] Cancès, E.; Cazeaux, P.; Luskin, M., J. Math. Phys., 58, 063502 (2017) · Zbl 1371.82099 · doi:10.1063/1.4984041
[7] Massatt, D.; Luskin, M.; Ortner, C., Multiscale Model. Simul., 15, 476 (2017) · Zbl 1365.81164 · doi:10.1137/16M1088363
[8] S. Etter, D. Massatt, M. Luskin, C. Ortner, arXiv:1907.01314 (2019)
[9] Bistritzer, R.; MacDonald, A. H., Proc. Natl. Acad. Sci., 108, 12233 (2011) · doi:10.1073/pnas.1108174108
[10] G. Catarina, B. Amorim, E.V. Castro, J.M.V.P. Lopes, N. Peres, Twisted Bilayer Graphene: Low?Energy Physics, Electronic and Optical Properties, inHandbook of Graphene Set, edited by E. Celasco, A.N. Chaika, T. Stauber, M. Zhang, C. Ozkan, C. Ozkan, U. Ozkan, B. Palys, S.W. Harun (2019), doi:10.1002/9781119468455.ch44
[11] Massatt, D.; Carr, S.; Luskin, M.; Ortner, C., SIAM J. Multiscale Model. Simul., 16, 429 (2018) · Zbl 1434.82101 · doi:10.1137/17M1141035
[12] Stauber, T.; San-Jose, P.; Brey, L., New J. Phys., 15, 113050 (2013) · doi:10.1088/1367-2630/15/11/113050
[13] Moon, P.; Son, Y. W.; Koshino, M., Phys. Rev. B, 90, 155427 (2014) · doi:10.1103/PhysRevB.90.155427
[14] Stauber, T.; Peres, N. M.R.; Geim, A. K., Phys. Rev. B, 78, 085432 (2008) · doi:10.1103/PhysRevB.78.085432
[15] Le, H. A.; Do, V. N., Phys. Rev. B, 97, 125136 (2018) · doi:10.1103/PhysRevB.97.125136
[16] Vela, A.; Moutinho, M. V.O.; Culchac, F. J.; Venezuela, P.; Capaz, R. B., Phys. Rev. B, 98, 155135 (2018) · doi:10.1103/PhysRevB.98.155135
[17] Carr, S.; Massatt, D.; Torrisi, S. B.; Cazeaux, P.; Luskin, M.; Kaxiras, E., Phys. Rev. B, 98, 224102 (2018) · doi:10.1103/PhysRevB.98.224102
[18] Yoo, H.; Engelke, R.; Carr, S.; Fang, S.; Zhang, K.; Cazeaux, P.; Sung, S. H.; Hovden, R.; Tsen, A. W.; Taniguchi, T., Nat. Mater., 18, 448 (2019) · doi:10.1038/s41563-019-0346-z
[19] Cazeauz, P.; Luskin, M.; Massatt, D., Arch. Rat. Mech. Anal., 235, 1289 (2019) · Zbl 1433.74051 · doi:10.1007/s00205-019-01444-y
[20] Mora, C.; Regnault, N.; Bernevig, B. A., Phys. Rev. Lett., 123, 026402 (2019) · doi:10.1103/PhysRevLett.123.026402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.