×

Testing de Broglie’s double solution in the mesoscopic regime. (English) Zbl 1516.81006

Summary: We present here solutions of a non-linear Schrödinger equation in presence of an arbitrary linear external potential. The non-linearity expresses a self-focusing interaction. These solutions are the product of the pilot wave with peaked solitons the velocity of which obeys the guidance equation derived by Louis de Broglie in 1926. The degree of validity of our approximations increases when the size of the soliton decreases and becomes negligible compared to the typical size over which the pilot wave varies. We discuss the possibility to reveal their existence by implementing a humpty-dumpty Stern-Gerlach interferometer in the mesoscopic regime.

MSC:

81P05 General and philosophical questions in quantum theory
35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
81Q15 Perturbation theories for operators and differential equations in quantum theory
37C50 Approximate trajectories (pseudotrajectories, shadowing, etc.) in smooth dynamics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2010). arXiv:quant-ph/0609184 · Zbl 1443.81002
[2] Bohm, D., A suggested interpretation of the quantum theory in terms of “Hidden” variables. I, Phys. Rev., 85, 2, 166-179 (1952) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.166
[3] Bohm, D., A suggested interpretation of the quantum theory in terms of “hidden” variables. II., Phys. Rev., 85, 2, 180-193 (1952) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.180
[4] Holland, PR, The Quantum Theory of Motion (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0854.00009 · doi:10.1017/CBO9780511622687
[5] de Broglie, L.: Une tentative d’interprétation causale et non linéaire de la mécanique ondulatoire la théorie de la double solution. Paris: Gauthier- Villars, English translation: Nonlinear wave mechanics: A causal interpretation, p. 1960. Elsevier, Amsterdam (1956) · Zbl 0074.44003
[6] de Broglie, L.: Interpretation of quantum mechanics by the double solution theory. Annales de la Fondation Louis de Broglie, 12, 4, 1987, English translation from a paper originally published in the book Foundations of Quantum Mechanics- Rendiconti della Scuola Internazionale di Fisica Enrico Fermi, IL Corso, B. d’ Espagnat ed. Academic Press N.Y. (1972)
[7] Hatifi, M.; Lopez-Fortin, C.; de Durt, T., Broglie’s double solution: limitations of the self-gravity approach, Ann. Fond. Louis Broglie, 43, 63-90 (2018)
[8] Durt, T.: L. de Broglie’s double solution and self-gravitation. Ann. Fond. Louis de Broglie 42, 73 (2017)
[9] Fargue, D., Louis de Broglie’s double solution: a promising but unfinished theory, Ann. Fond. Louis Broglie, 42, 19 (2017)
[10] Guerret, P.; Vigier, JP, De Broglie’s wave particle duality in the stochastic interpretation of quantum mechanics: a testable physical assumption, Found. Phys., 12, 1057-1083 (1982) · doi:10.1007/BF01300546
[11] Croca, JR, Towards a Nonlinear Quantum Physics (2003), London: World Scientific, London · Zbl 1027.81001
[12] Barut, A.: Diffraction and interference of single de Broglie wavelets - Deterministic wave mechanics. In Courants, Amers, Ecueils en Microphysique, Fondation L. de Broglie (1993)
[13] Bindel, L., Mécanique quantique non-relativiste d’une particule individuelle, Ann. Fond. Louis Broglie, 37, 143-171 (2012) · Zbl 1329.81162
[14] Colin, S.; Durt, T.; Willox, R., L. de Broglie’s double solution program: 90 years later, Ann. Fond. Louis Broglie, 42, 19 (2017)
[15] Fargue, D.: Permanence of the corpuscular appearance and non linearity of the wave equation. In S. Diner et al., editor, The wave-particle dualism, pp. 149-172. Reidel (1984)
[16] Colin, S.; Durt, T.; Willox, R., Can quantum systems succumb to their own (gravitational) attraction?, Class. Quantum Grav., 31 (2014) · Zbl 1316.81090 · doi:10.1088/0264-9381/31/24/245003
[17] de Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. Comptes rendus de l’ académie des sciences, \(183, n^\circ 447 (1926)\)
[18] Zloshchastiev, KG, Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory, Acta Physica Polonica B, 42, 2, 261 (2011) · doi:10.5506/APhysPolB.42.261
[19] Norsen, T., On the explanation of Born-rule statistics in the de Broglie-Bohm pilot-wave theory, Entropy, 20, 6, 422 (2018) · doi:10.3390/e20060422
[20] Valentini, A.: On the pilot-wave theory of classical, quantum and subquantum physics. PhD Thesis, SISSA (1992)
[21] Valentini, A.; Westman, H., Dynamical origin of quantum probabilities, Proc. R. Soc. A, 461, 253-272 (2005) · Zbl 1145.81306 · doi:10.1098/rspa.2004.1394
[22] Colin, S.; Struyve, W., Quantum non-equilibrium and relaxation to quantum equilibrium for a class of de Broglie-Bohm-type theories, New J. Phys., 12 (2010) · Zbl 1375.81118 · doi:10.1088/1367-2630/12/4/043008
[23] Towler, MD; Russell, NJ; Valentini, Antony, Time scales for dynamical relaxation to the Born rule, Proc. R. Soc. A, 468, 2140, 990-1013 (2011) · Zbl 1364.81139 · doi:10.1098/rspa.2011.0598
[24] Colin, S., Relaxation to quantum equilibrium for Dirac fermions in the de Broglie-Bohm pilot-wave theory, Proc. R. Soc. A, 468, 2140, 1116-1135 (2012) · Zbl 1364.81138 · doi:10.1098/rspa.2011.0549
[25] Abraham, E.; Colin, S.; Valentini, A., Long-time relaxation in the pilot-wave theory, J. Phys. A, 47, 395306 (2014) · Zbl 1300.81047 · doi:10.1088/1751-8113/47/39/395306
[26] Contopoulos, G.; Delis, N.; Efthymiopoulos, C., Order in de Broglie - Bohm quantum mechanics, J. Phys. A, 45, 16, 165301 (2012) · Zbl 1241.81087 · doi:10.1088/1751-8113/45/16/165301
[27] Efthymiopoulos, C.; Kalapotharakos, C.; Contopoulos, G., Origin of chaos near critical points of quantum flow, Phys. Rev. E, 79, 3, 036203 (2009) · doi:10.1103/PhysRevE.79.036203
[28] Tzemos, A.C., Contopoulos, G., Efthymiopoulos, C.: Origin of chaos in 3-d Bohmian trajectories. arXiv:1609.07069 (2016) · Zbl 1366.81177
[29] Efthymiopoulos, C.; Contopoulos, G.; Tzemos, AC, Chaos in de Broglie—Bohm quantum mechanics and the dynamics of quantum relaxation, Ann. Fond. Louis Broglie, 42, 73 (2017)
[30] Struyve, W.: Towards a novel approach to semi-classical gravity. In: The Philosophy of Cosmology, Chap. 18. Cambridge University Press, Cambridge, p. 356 (2017)
[31] Tilloy, A., Binding quantum matter and space-time, without romanticism, Founds. Phys., 48, 1753-1769 (2018) · Zbl 1411.81047 · doi:10.1007/s10701-018-0224-6
[32] Møller, C.: The energy-momentum complex in general relativity and related problems. In A. Lichnerowicz and M.-A. Tonnelat, editor, Les Théories Relativistes de la Gravitation - Colloques Internationaux CNRS 91. CNRS (1962)
[33] Rosenfeld, L., On quantization of fields, Nucl. Phys., 40, 353-356 (1963) · Zbl 0108.22301 · doi:10.1016/0029-5582(63)90279-7
[34] Diósi, L., Gravitation and quantum-mechanical localization of macro-objects, Phys. Lett. A, 105, 199-202 (1984) · doi:10.1016/0375-9601(84)90397-9
[35] Penrose, R., On gravity’s role in quantum state reduction, Gen. Relat. Gravit., 28, 5, 581-600 (1996) · Zbl 0855.53046 · doi:10.1007/BF02105068
[36] Penrose, R.: On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Foundations of Physics, Vol. 44, Issue 5 (2014) · Zbl 1311.81009
[37] Hatifi, M., Durt, T.: Revealing self-gravity in a Stern-Gerlach Humpty-Dumpty experiment. arxiv:quant-ph 200607420 (2019)
[38] Marletto, C.; Vedral, V., Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett., 119, 24, 240402 (2017) · doi:10.1103/PhysRevLett.119.240402
[39] Bose, S.; Mazumdar, A.; Morley, G.; Ulbricht, H.; Toro, M.; Paternostro, M.; Geraci, A.; Andrew, A.; Barker, P.; Kim, MS; Milburn, G., Spin entanglement witness for quantum gravity, Phys. Rev. Lett., 119, 24, 240402 (2017) · doi:10.1103/PhysRevLett.119.240401
[40] Scully, M.; Englert, B-G; Schwinger, J., Spin coherence and Humpty-Dumpty. III. The effects of observation, Phys. Rev. A, 40, 4, 1775 (1989) · doi:10.1103/PhysRevA.40.1775
[41] Gisin, N., Weinberg’s non-linear quantum mechanics and superluminal communications, Phys. Lett. A, 143, 1-2, 1-2 (1990) · doi:10.1016/0375-9601(90)90786-N
[42] Polchinski, J., Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox, Phys. Rev. Lett., 66, 4, 397-400 (1991) · Zbl 0968.81504 · doi:10.1103/PhysRevLett.66.397
[43] Page, DN; Geilker, CD, Indirect evidence for quantum gravity, Phys. Rev. Lett., 47, 979-982 (1981) · doi:10.1103/PhysRevLett.47.979
[44] Lucas, R.: Sur la répartition de la masse équivalente à l’énergie potentielle et ses conséquences (par L. de Broglie), Note de M. René Lucas, Comptes rendus de l’ académie des sciences, 282 (1976)
[45] Einstein, A.: Letter from A. Einstein to H. Lorentz. Collected papers of A. Einstein: The swiss years: correspondence 1902-1914, 5 (2004)
[46] Poincaré, H., La fin de la matière, Athenaeum, 4086, 201-202 (1906)
[47] Poincaré, H., Sur la dynamique de l’ électron, Rendiconti del Circolo matematico di Palermo, 21, 129-176 (1906) · JFM 37.0886.01 · doi:10.1007/BF03013466
[48] Fer, F., L’ irréversibilité, fondement de la stabilité du monde physique (1977), Paris: Gauthier- Villars, Paris
[49] Fargue, D., Etats stationnaires en symétrie sphérique d’une famille d’équation de Schroedinger non-linéaires, Annales de la Fondation Louis deBroglie, 12, 203 (1987)
[50] Visser, M., A classical model for the electron, Phys. Lett. A, 139, 3, 4 (1989)
[51] Anastopoulos, C.; Hu, B-L, Problems with the Newton-Schrödinger equations, New J. Phys., 16 (2014) · Zbl 1451.81380 · doi:10.1088/1367-2630/16/8/085007
[52] Margalit, Y., Dobkowski, O., Zhou, Z., Amit, O., Japha, Y., Moukouri, S., Rohrlich, D., Mazumdar, A., Bose, S., Henkel, C., Folman, R.: Realization of a complete Stern-Gerlach interferometer, Science Advances , 7(22) (2020)
[53] Colella, R.; Overhauser, AW; Werner, SA, Observation of gravitationally induced quantum interference, Phys. Rev. Lett., 34, 1472-1474 (1975) · doi:10.1103/PhysRevLett.34.1472
[54] Bialynicki-Birula, I.; Mycielski, J., Nonlinear wave mechanics, Ann. Phys., 100, 62-93 (1976) · doi:10.1016/0003-4916(76)90057-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.