×

A new four-parameter lifetime distribution. (English) Zbl 1516.62114

Summary: Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the \(r\)th raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.

MSC:

62-XX Statistics

References:

[1] M.V. Aarset, How to identify bathtub hazard rate, IEEE Trans. Reliab. 36 (1987), pp. 106-108. · Zbl 0625.62092 · doi:10.1109/TR.1987.5222310
[2] K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35-42. · Zbl 0908.62096 · doi:10.1016/S0167-7152(98)00012-1
[3] A. Asgharzadeh, S.H. Bakouch, S. Nadarajah, and L. Esmaeili, A new family of compound lifetime distributions, Kybernetika 50 (2014), pp. 142-169. · Zbl 1291.62040
[4] S.K. Ashour and M.A. Eltehiwy, Exponentiated power Lindley distribution, J. Adv. Res. (2014), doi:10.1016/j.jare.2014.08.005. · doi:10.1016/j.jare.2014.08.005
[5] S.F. Bagheri, E.B. Samani, and M. Ganjali, The generalized modified Weibull power series distribution: Theory and applications, Comput. Statist. Data Anal. 94 (2016), pp. 136-160. · Zbl 1468.62020 · doi:10.1016/j.csda.2015.08.008
[6] H.S. Bakouch, B.M. Al-Zahrani, A.A. Al-Shomrani, V.A.A. Marchi, and F. Louzada, An extended Lindley distribution, J. Korean Statist. Soc. 41 (2012), pp. 75-85. · Zbl 1296.62031 · doi:10.1016/j.jkss.2011.06.002
[7] W. Barreto-Souza and F. Cribari-Neto, A generalization of the exponential-Poisson distribution, Statist. Probab. Lett. 79 (2009), pp. 2493-2500. · Zbl 1176.62005 · doi:10.1016/j.spl.2009.09.003
[8] W. Barreto-Souza, A.L. Morais, and G.M. Cordeiro, The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645-657. · Zbl 1348.60014
[9] M. Chahkandi and M. Ganjali, On some lifetime distributions with decreasing failure rate, Comput. Statist. Data Anal. 53 (2009), pp. 4433-4440. · Zbl 1298.62175 · doi:10.1016/j.csda.2009.06.016
[10] G. Chen and N. Balakrishnan, A general purpose approximate goodness-of-fit test, J. Qual. Technol. 27 (1995), pp. 154-161.
[11] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, On the Lambert \(W\) function, Adv. Comput. Math. 5 (1996), pp. 329-359. · Zbl 0863.65008 · doi:10.1007/BF02124750
[12] M.E. Ghitany, On a recent generalization of gamma distribution, Comm. Statist. Theory Methods 27 (1998), pp. 223-233. · Zbl 0887.62016
[13] M.E. Ghitany, D.K. Al-Mutairi, N. Balakrishnan, and L.J. Al-Enezi, Power Lindley distribution and associated inference, Comput. Statist. Data Anal. 64 (2013), pp. 20-33. · Zbl 1468.62063 · doi:10.1016/j.csda.2013.02.026
[14] M.E. Ghitany, F. Al-Qallaf, D.K. Al-Mutairi, and H.A. Hussain, A two-parameter weighted Lindley distribution and its applications to survival data, Math. Comput. Simulation 81 (2011), pp. 1190-1201. · Zbl 1208.62021 · doi:10.1016/j.matcom.2010.11.005
[15] M.E. Ghitany, B. Atieh, and S. Nadarajah, Lindley distribution and its application, Math. Comput. Simulation 78 (2008), pp. 493-506. · Zbl 1140.62012 · doi:10.1016/j.matcom.2007.06.007
[16] G.M. Giorgi, Concentration Index, Bonferroni, Encyclopedia of Statistical Sciences, Vol. 2, Wiley, New York, 1998, pp. 141-146.
[17] G.M. Giorgi and M. Crescenzi, A look at the Bonferroni inequality measure in a reliability framework, Statistica 4 (2001), pp. 571-583. · Zbl 1116.62420
[18] J.A. Greenwood, J.M. Landwehr, N.C. Matalas, and J.R. Wallis, Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form, Water Resour. Res. 15 (1979), pp. 1049-1054. · doi:10.1029/WR015i005p01049
[19] W. Gui, S. Zhang, and X. Lu, The Lindley-Poisson distribution in lifetime analysis and its properties, J. Math. Stat. 43 (2014), pp. 1063-1077. · Zbl 1333.62244
[20] P.L. Gupta and R.C. Gupta, On the moments of residual life in reliability and some characterization results, Comm. Statist. Theory Methods 12 (1983), pp. 449-461. · Zbl 0513.62017
[21] J.R.M. Hosking, The theory of probability weighted moments, IBM Research Report, RC 12210, Yorktown Heights, New York, 1986.
[22] J.R.M. Hosking, J.R. Wallis, and E.F. Wood, Estimation of the generalized extreme-value distribution by the method of probability-weighted moments, Technometrics 27 (1985), pp. 251-261.
[23] N.L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 1, 2nd ed., Wiley, New York, 1994. · Zbl 0811.62001
[24] C. Kundu and A.K. Nanda, Some reliability properties of the inactivity time, Comm. Statist. Theory Methods 39 (2010), pp. 899-911. · Zbl 1200.62009
[25] A.J. Lemonte and G.M. Cordeiro, An extended Lomax distribution, Statistics 47 (2013), pp. 800-816. · Zbl 1440.62062
[26] D.V. Lindley, Fiducial distributions and Bayes’ theorem, J. R. Stat. Soc. Ser. B 20 (1958), pp. 102-107. · Zbl 0085.35503
[27] F. Louzada-Neto, M. Roman, and V.G. Cancho, The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart, Comput. Statist. Data Anal. 55 (2011), pp. 2516-2524. · Zbl 1465.62013 · doi:10.1016/j.csda.2011.02.018
[28] E. Mahmoudi and A.A. Jafari, Generalized exponential-power series distributions, Comput. Statist. Data Anal. 56 (2012), pp. 4047-4066. · Zbl 1254.60022 · doi:10.1016/j.csda.2012.04.009
[29] E. Mahmoudi and A.A. Jafari, The compound class of linear failure rate-power series distributions: Model, properties and applications, preprint (2014). Available at arXiv: 1402.5282.
[30] E. Mahmoudi and A. Sepahdar, Exponentiated Weibull-Poisson distribution: model, properties and applications, Math. Comput. Simulation 92 (2013), pp. 76-97. · Zbl 1499.60041 · doi:10.1016/j.matcom.2013.05.005
[31] E. Mahmoudi, A. Sepahdar, and A. Lemonte, Exponentiated Weibull-logarithmic distribution: Model, properties and applications, preprint (2014). Available at arXiv:1402.5264.
[32] E. Mahmoudi and M. Shiran, Exponentiated Weibull power series distributions and its applications, preprint. Available at arXiv:1206.4008, arXiv:1204.4248, arXiv:1212.5586.
[33] F. Merovci and I. Elbatal, Transmuted Lindley-geometric and its applications, J. Statist. Appl. Probab. 3 (2014), pp. 77-91. · doi:10.12785/jsap/030107
[34] J. Mi, Bathtub failure rate and upside-down bathtub mean residual life, IEEE Trans. Reliab. 44 (1995), pp. 388-391. · doi:10.1109/24.406570
[35] J.J.A. Moors, A quantile alternative for kurtosis, The Statistician 37 (1988), pp. 25-32. · doi:10.2307/2348376
[36] A.L. Morais and W. Barreto-Souza, A compound class of Weibull and power series distributions, Comput. Statist. Data Anal. 55 (2011), pp. 1410-1425. · Zbl 1328.62032 · doi:10.1016/j.csda.2010.09.030
[37] G.S. Mudholkar and D.K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab. 42 (1993), pp. 299-302. · Zbl 0800.62609 · doi:10.1109/24.229504
[38] G.S. Mudholkar, D.K. Srivastava, and M. Friemer, The exponentiated Weibull family: A reanalysis of the bus-motor-failure data, Technometrics 37 (1995), pp. 436-445. · Zbl 0900.62531
[39] G.S. Mudholkar, D.K. Srivastava, and G.D. Kollia, A generalization of the Weibull distribution with application to the analysis of survival data, J. Amer. Statist. Assoc. 91 (1996), pp. 1575-1583. · Zbl 0881.62017
[40] S. Nadarajah, H.S. Bakouch, and R.A. Tahmasbi, A generalized Lindley distribution, Sankhya B 73 (2011), pp. 331-359. · Zbl 1268.62018 · doi:10.1007/s13571-011-0025-9
[41] S. Nadarajah, F. Shahsanaei, and S. Rezaei, A new four-parameter lifetime distribution, J. Stat. Comput. Simul. 84 (2012), pp. 248-263. · Zbl 1453.62370
[42] A.K. Nanda, H. Singh, N. Misra, and P. Paul, Reliability properties of reversed residual lifetime, Comm. Statist. Theory Methods 32 (2003), pp. 2031-2042. · Zbl 1156.62360
[43] B. Oluyede and T. Yang, A new class of generalized Lindley distributions with applications, J. Stat. Comput. Simul. Available at http://dx.doi.org/10.1080/00949655.2014.917308. · Zbl 1457.62067
[44] M. Pararai, G. Warahena-Liyanage, and B.O. Oluyede, A new class of generalized power Lindley distribution with applications to lifetime data, Theor. Math. Appl. 5 (2015), pp. 53-96. · Zbl 1384.60053
[45] K.S. Park, Effect of burn-in on mean residual life, IEEE Trans. Reliab. 34 (1985), pp. 522-523. · Zbl 0574.90039 · doi:10.1109/TR.1985.5222253
[46] M.W.A. Ramos, A. Percontini, G.M. Cordeiro, and V. Ronaldo da Silva, The Burr XII negative binomial distribution with applications to lifetime data, Int. J. Stat. Probab. 1 (2015), pp. 109-125.
[47] R.B. Silva, M. Bourguignon, C.R.B. Dias, and G.M. Cordeiro, The compound class of extended Weibull power series distributions, Comput. Statist. Data Anal. 58 (2013), pp. 352-367. · Zbl 1365.62063 · doi:10.1016/j.csda.2012.09.009
[48] R.L. Smith and J.C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, Appl. Stat. 36 (1987), pp. 358-369. · doi:10.2307/2347795
[49] R. Tahmasbi and S. Rezaei, A two-parameter lifetime distribution with decreasing failure rate, Comput. Statist. Data Anal. 52 (2008), pp. 3889-3901. · Zbl 1245.62128 · doi:10.1016/j.csda.2007.12.002
[50] L.C. Tang, Y. Lu, and E.P. Chew, Mean residual life distributions, IEEE Trans. Reliab. 48 (1999), pp. 68-73. · doi:10.1109/24.765930
[51] C. Tojeiro, R. Louzada, and P. Borges, The complementary Weibull geometric distribution, J. Stat. Comput. Simul. 6 (2014), pp. 1345-1362. · Zbl 1453.62377
[52] W. Weibull, A statistical distribution function of wide applicability, Trans. ASME J. Appl. Mech. 18 (1951), pp. 293-297. · Zbl 0042.37903
[53] H. Zakerzadeh and A. Dolati, Generalized Lindley distribution, J. Math. Extension 3 (2009), pp. 13-25. · Zbl 1274.60047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.