×

On the Torelli Lie algebra. (English) Zbl 1516.57028

Let \(\Sigma_{g,1}\) denote a compact oriented surface of genus \(g\) with one boundary component. The isotopy classes of orientation-preserving diffeomorphisms of \(\Sigma_{g,1}\) which act as the identity on \(H_1(\Sigma_{g,1}; {\mathbb{Z}})\) form a group \(T_{g,1}\) called the Torelli group of \(\Sigma_{g,1}\). Let \({\mathbf{t}}_{g,1}\) denote the Mal’cev Lie algebra associated to the group \(T_{g,1}\). R. Hain has completely determined \({\mathbf{t}}_{g,1}\) and proved that it is quadratic, if the genus is at least \(4\), see [Contemp. Math. 150, 75–105 (1993; Zbl 0831.57005); J. Am. Math. Soc. 10, No. 3, 597–651 (Zbl 0915.57001); J. Topol. 8, No. 1, 213–246 (2015; Zbl 1318.14028)]. In this paper, the authors investigate \({\mathbf{t}}_{g,1}\) further. They prove that stably, \({\mathbf{t}}_{g,1}\) is Koszul. They also consider the geometric Johnson homomorphism of \({\mathbf{t}}_{g,1}\), and show that the kernel of that homomorphism consists only of trivial \(\mathrm{Sp}_{2g}({\mathbb{Z}})\)-representations lying in the centre.

MSC:

57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
18M70 Algebraic operads, cooperads, and Koszul duality
20G05 Representation theory for linear algebraic groups

References:

[1] Akazawa, H., ‘Symplectic invariants arising from a Grassmann quotient and trivalent graphs’, Math. J. Okayama Univ.47 (2005), 99-117. · Zbl 1111.57003
[2] Atiyah, M. F., The Signature of Fibre-Bundles, Global Analysis (Papers in Honor of K. Kodaira)(Univ. Tokyo Press, Tokyo, 1969), 73-84. · Zbl 0193.52302
[3] Andersson, A., Willwacher, T. and Zivkovic, M., ‘Oriented hairy graphs and moduli spaces of curves’, Preprint, 2020, arXiv.org:2005.00439.
[4] Bousfield, A. K. and Kan, D. M., Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, vol. 304 (Springer-Verlag, Berlin-New York, 1972). · Zbl 0259.55004
[5] Berglund, A. and Madsen, I., ‘Rational homotopy theory of automorphisms of manifolds’, Acta Math.224(1) (2020), 67-185. · Zbl 1441.57033
[6] Chan, M., Galatius, S. and Payne, S., ‘Tropical curves, graph complexes, and top weight cohomology of \({\mathbf{\mathcal{M}}}_g\) ’, J. Amer. Math. Soc. 34(2) (2021), 565-594. · Zbl 1485.14045
[7] Chan, M., Galatius, S. and Payne, S., Topology of Moduli Spaces of Tropical Curves with Marked Points, Facets of Algebraic Geometry. Vol. I, London Math. Soc. Lecture Note Ser., vol. 472, (Cambridge Univ. Press, Cambridge, 2022), 77-131. 4381898. · Zbl 1489.14038
[8] Felder, M., Naef, F. and Willwacher, T., ‘Stable cohomology of graph complexes’, Sel. Math., New Ser. 29(2) (2023), No 23. · Zbl 1518.81051
[9] Garoufalidis, S. and Getzler, E., ‘Graph complexes and the symplectic character of the Torelli group’, Preprint, 2017, arxiv.org:1712.03606.
[10] Ginzburg, V. and Kapranov, M., ‘Koszul duality for operads’, Duke Math. J. 76(1) (1994), 203-272. · Zbl 0855.18006
[11] Garoufalidis, S. and Nakamura, H., ‘Some \(IHX \) -type relations on trivalent graphs and symplectic representation theory’, Math. Res. Lett.5(3) (1998), 391-402. · Zbl 1012.57032
[12] Galatius, S. and Randal-Williams, O., ‘Moduli spaces of manifolds: A user’s guide’, in Handbook of Homotopy Theory (Chapman & Hall/CRC, CRC Press, Boca Raton, FL, 2019), 445-487. · Zbl 1476.57058
[13] Goerss, P. and Schemmerhorn, K., ‘Model categories and simplicial methods’, in Interactions between Homotopy Theory and Algebra, Contemp. Math., vol. 436 (Amer. Math. Soc., Providence, RI, 2007), 3-49. 2355769. · Zbl 1134.18007
[14] Hain, R., ‘The de Rham homotopy theory of complex algebraic varieties. I’, \(K\) -Theory1(3) (1987), 271-324. 908993. · Zbl 0637.55006
[15] Hain, R., ‘Completions of mapping class groups and the cycle \(C-{C}^-\) ’, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., vol. 150 (Amer. Math. Soc., Providence, RI, 1993), 75-105. 1234261. · Zbl 0831.57005
[16] Hain, R., ‘Infinitesimal presentations of the Torelli groups’, J. Amer. Math. Soc.10(3) (1997), 597-651. · Zbl 0915.57001
[17] Hain, R., ‘Genus 3 mapping class groups are not Kähler’, J. Topol.8(1) (2015), 213-246. · Zbl 1318.14028
[18] Hain, R., ‘Johnson homomorphisms’, EMS Surv. Math. Sci.7(1) (2020), 33-116. 4195745. · Zbl 1461.57004
[19] Hirschhorn, P. S., Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99 (American Mathematical Society, Providence,RI, 2003). 1944041. · Zbl 1017.55001
[20] Hain, R. and Looijenga, E., ‘Mapping class groups and moduli spaces of curves’, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62 (Amer. Math. Soc., Providence, RI, 1997), 97-142. 1492535. · Zbl 0914.14013
[21] Habiro, K. and Massuyeau, G., ‘Symplectic Jacobi diagrams and the Lie algebra of homology cylinders’, J. Topol.2(3) (2009), 527-569. 2546585. · Zbl 1202.57014
[22] Habegger, N. and Sorger, C., ‘An infinitesimal presentation of the Torelli group of a surface with boundary’, 2000, http://www.math.sciences.univ-nantes.fr/habegger/PS/inf180300.ps.
[23] Isaacson, S. B., Cubical Homotopy Theory and Monoidal Model Categories (ProQuest LLC, Ann Arbor, MI, 2009). Thesis (Ph.D.)-Harvard University. 2713397.
[24] Johnson, D., ‘The structure of the Torelli group. III. The abelianization of \(\mathbf{\mathcal{T}} \) ’, Topology24(2) (1985), 127-144. · Zbl 0571.57010
[25] Kawazumi, N. and Morita, S., ‘The primary approximation to the cohomology of the moduli space of curves and cocycles for the stable characteristic classes’, Math. Res. Lett.3(5) (1996), 629-641. · Zbl 0889.14009
[26] Kohno, T. and Oda, T., ‘The lower central series of the pure braid group of an algebraic curve’, in Galois Representations and Arithmetic Algebraic Geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., vol. 12 (North-Holland, Amsterdam, 1987), 201-219. · Zbl 0642.20035
[27] Kupers, A. and Randal-Williams, O., ‘The cohomology of Torelli groups is algebraic’, Forum of Mathematics, Sigma8 (2020), e64. · Zbl 1461.57016
[28] Kupers, A. and Randal-Williams, O., ‘On diffeomorphisms of even-dimensional discs’, Preprint, 2020, arxiv.org:2007.13884.
[29] Kupers, A. and Randal-Williams, O., ‘On the cohomology of Torelli groups’, Forum of Mathematics, Pi8 (2020), e7. · Zbl 1445.55011
[30] Koike, K. and Terada, I., ‘Young-diagrammatic methods for the representation theory of the classical groups of type \({B}_n,{C}_n,{D}_n^{\prime }\) , J. Algebra107(2) (1987), 466-511. · Zbl 0622.20033
[31] Loday, J.-L. and Vallette, B., Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346 (Springer, Heidelberg, 2012). · Zbl 1260.18001
[32] Millès, J., The Koszul complex is the cotangent complex, Int. Math. Res. Not. IMRN (3) (2012), 607-650. · Zbl 1247.18007
[33] Morita, S., ‘Abelian quotients of subgroups of the mapping class group of surfaces’, Duke Math. J.70(3) (1993), 699-726. 1224104. · Zbl 0801.57011
[34] Morita, S., ‘Structure of the mapping class groups of surfaces: a survey and a prospect’, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2 (Geom. Topol. Publ., Coventry, 1999), 349-406. 1734418. · Zbl 0959.57018
[35] Morita, S., ‘Cohomological structure of the mapping class group and beyond’, in Problems on Mapping Class Groups and Related Topics, Proc. Sympos. Pure Math., vol. 74 (Amer. Math. Soc., Providence, RI, 2006), 329-354. 2264550. · Zbl 1304.57030
[36] Morita, S., Sakasai, T. and Suzuki, M., ‘Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras’, Adv. Math.282 (2015), 291-334. · Zbl 1366.17021
[37] Morita, S., Sakasai, T. and Suzuki, M., ‘Torelli group, Johnson kernel, and invariants of homology spheres’, Quantum Topol.11(2) (2020), 379-410. 4118638. · Zbl 1462.57017
[38] Sam, S. V. and Snowden, A., ‘Stability patterns in representation theory’, Forum Math. Sigma3 (2015), e11, 108. · Zbl 1319.05146
[39] Turchin, V. and Willwacher, T., ‘Commutative hairy graphs and representations of \(\mathit{\mathsf{Out}}\left({F}_r\right)\) ’, J. Topol.10(2) (2017), 386-411. 3653316. · Zbl 1376.55010
[40] Willwacher, T., ‘M. Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra’, Invent. Math.200(3) (2015), 671-760. 3348138. · Zbl 1394.17044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.