×

Multisoliton solutions of the two-component Camassa-Holm equation and its reductions. (English. Russian original) Zbl 1516.35362

Theor. Math. Phys. 214, No. 3, 308-333 (2023); translation from Teor. Mat. Fiz. 214, No. 3, 359-386 (2023).
Summary: The Bäcklund transformation for an integrable two-component Camassa-Holm (2CH) equation is presented and studied. It involves both dependent and independent variables. A nonlinear superposition formula is given for constructing multisoliton, multiloop, and multikink solutions of the 2CH equation. We also present solutions of the Camassa-Holm equation, the two-component Hunter-Saxton (2HS) equation, and the Hunter-Saxton equation, which all arise from solutions of the 2CH equation. By appropriate limit procedures, a solution of the 2HS equation is successfully obtained from that of the 2CH equation, which is worked out with the method of Bäcklund transformations. By analyzing the solution, we obtain the soliton and loop solutions for 2HS equation.

MSC:

35Q51 Soliton equations
35C08 Soliton solutions
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Liu, S.-Q.; Zhang, Y. J., Deformation of semisimple bihamiltonian structures of hydrodynamic type, J. Geom. Phys., 54, 427-453 (2005) · Zbl 1079.37058 · doi:10.1016/j.geomphys.2004.11.003
[2] Falqui, G., On a two-component generalization of the CH equation, Analytic and Geometric Theory of the Camassa, 1, 1 (2004)
[3] Schiff, J., Zero curvature formulations of dual hierarchies, J. Math. Phys., 37, 1928-1938 (1996) · Zbl 0863.35093 · doi:10.1063/1.531486
[4] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[5] Fokas, A. S., On a class of physically important integrable equations, Phys. D, 87, 145-150 (1995) · Zbl 1194.35363 · doi:10.1016/0167-2789(95)00133-O
[6] Fuchssteiner, B.; Fokas, A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4, 47-66 (1981) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[7] Parker, A., On the Camassa-Holm equation and a direct method of the solution. I. Bilinear form and solitary waves, Proc. Roy. Soc. London Ser. A, 460, 2929-2957 (2004) · Zbl 1068.35110 · doi:10.1098/rspa.2004.1301
[8] Parker, A., On the Camassa-Holm equation and a direct method of the solution. II. Soliton solutions, Proc. Roy. Soc. London Ser. A, 461, 3611-3632 (2005) · Zbl 1370.35236
[9] Li, Y. S.; Zhang, J. E., The multiple-soliton solution of the Camassa-Holm equation, Proc. Roy. Soc. London Ser. A, 460, 2617-2627 (2004) · Zbl 1068.35109 · doi:10.1098/rspa.2004.1331
[10] Matsuno, Y., Parametric representation for the multisoliton solution of the Camassa-Holm equation, J. Phys. Soc. Japan, 74, 1983-1987 (2005) · Zbl 1076.35102 · doi:10.1143/JPSJ.74.1983
[11] Matsuno, Y., Multisoliton solutions of the two-component Camassa-Holm system and their reductions, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1402.37078 · doi:10.1088/1751-8121/aa7e8d
[12] Xia, B. Q.; Zhou, R. G.; Qiao, Z. J., Darboux transformation and multi-soliton solutions of the Camassa-Holm equation and modified Camassa-Holm equation, J. Math. Phys., 57 (2016) · Zbl 1351.37252 · doi:10.1063/1.4964256
[13] Rasin, A. G.; Schiff, J., Bäcklund transformations for the Camassa-Holm equation, J. Nonlinear Sci., 27, 45-69 (2017) · Zbl 1365.37054 · doi:10.1007/s00332-016-9325-6
[14] Constantin, A., On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London Ser. A, 457, 953-970 (2001) · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[15] Beals, R.; Sattinger, D. H.; Szmigielski, J., Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140, 190-206 (1998) · Zbl 0919.35118 · doi:10.1006/aima.1998.1768
[16] Schiff, J., The Camassa-Holm equation: a loop group approach, Phys. D, 121, 24-43 (1998) · Zbl 0943.37034 · doi:10.1016/S0167-2789(98)00099-2
[17] Constantin, A.; Strauss, W. A., Stability of peakons, Commun. Pure Appl. Math., 53, 603-610 (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[18] Constantin, A.; Strauss, W. A., Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12, 415-422 (2002) · Zbl 1022.35053 · doi:10.1007/s00332-002-0517-x
[19] Johnson, R. S., On solutions of the Camassa-Holm equation, Proc. Roy. Soc. London Ser. A, 459, 1687-1708 (2003) · Zbl 1039.76006 · doi:10.1098/rspa.2002.1078
[20] Olver, P. J.; Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53, 1900-1906 (1996) · doi:10.1103/PhysRevE.53.1900
[21] Holm, D. D.; Ivanov, R. I., Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, 27 (2011) · Zbl 1216.35175 · doi:10.1088/0266-5611/27/4/045013
[22] Constantin, A.; Ivanov, R. I., On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372, 7129-7132 (2008) · Zbl 1227.76016 · doi:10.1016/j.physleta.2008.10.050
[23] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0472.35002 · doi:10.1137/1.9781611970883
[24] Escher, J.; Lechtenfeld, O.; Yin, Z. Y., Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Continuous Dyn. Syst., 19, 493-513 (2007) · Zbl 1149.35307 · doi:10.3934/dcds.2007.19.493
[25] Gui, G. L.; Liu, Y., On the global existence and wave-breaking criteria for the two- component Camassa-Holm system, J. Funct. Anal., 258, 4251-4278 (2010) · Zbl 1189.35254 · doi:10.1016/j.jfa.2010.02.008
[26] Li, J. B.; Li, Y. S., Bifurcations of travelling wave solutions for a two-component Camassa- Holm equation, Acta. Math. Sin. (English Ser.), 24, 1319-1330 (2008) · Zbl 1182.34064 · doi:10.1007/s10114-008-6207-3
[27] Chen, M.; Liu, S.-Q.; Zhang, Y. J., A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75, 1-15 (2006) · Zbl 1105.35102 · doi:10.1007/s11005-005-0041-7
[28] Wu, C.-Z., On solutions of the two-component Camassa-Holm system, J. Math. Phys., 47 (2006) · Zbl 1112.37067 · doi:10.1063/1.2234729
[29] Lin, J.; Ren, B.; Li, H.-M.; Li, Y.-S., Soliton solutions for two nonlinear partical differential equations using a Darboux transformation of the Lax pairs, Phys. Rev. E, 77 (2008) · doi:10.1103/PhysRevE.77.036605
[30] Yao, Yuqin; Huang, Yehui; Zeng, Yunbo, The two-component Camassa-Holm equation with self-consistent sources and its multisoliton solutions, Theoret. and Math. Phys., 162, 63-73 (2010) · Zbl 1195.76141 · doi:10.1007/s11232-010-0004-8
[31] Xia, B. Q.; Qiao, Z. J., A new two-component integrable system with peakon solutions, Proc. Roy. Soc. London Ser. A, 471 (2015) · Zbl 1371.35265
[32] Hu, Q. Y.; Yin, Z. Y., Well-posedness and blow-up phenomena for a periodic two-component Camassa-Holm equation, Proc. Roy. Soc. Edinburgh Sect. A, 141, 93-107 (2011) · Zbl 1213.35134 · doi:10.1017/S0308210509001218
[33] Chen, M.; Liu, S.-Q.; Zhang, Y. J., Hamiltonian structures and their reciprocal transformations for the \(r\)-KdV-CH hierarchy, J. Geom. Phys., 59, 1227-1243 (2009) · Zbl 1172.37318 · doi:10.1016/j.geomphys.2009.06.001
[34] Falqui, G., On a Camassa-Holm type equation with two dependent variables, J. Phys. A: Math. Gen., 39, 327-342 (2006) · Zbl 1084.37053 · doi:10.1088/0305-4470/39/2/004
[35] Aratyn, H.; Gomes, J. F.; Zimerman, A. H., On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa-Holm equation, SIGMA, 2 (2006) · Zbl 1131.37059
[36] Aratyn, H.; Gomes, J. F.; Zimerman, A. H., On negative flows of the AKNS hierarchy and a class of deformations of a bihamiltonian structure of hydrodynamic type, J. Phys. A: Math. Gen., 39, 1099-1114 (2006) · Zbl 1329.37061 · doi:10.1088/0305-4470/39/5/006
[37] Li, J. B.; Qiao, Z. J., Peakon, pseudo-peakon, and cuspon solutions for two generalized Camassa-Holm equations, J. Math. Phys., 54 (2013) · Zbl 1380.35050 · doi:10.1063/1.4835395
[38] Guo, Z. G.; Zhou, Y., On solutions to a two-component generalized Camassa-Holm equation, Stud. Appl. Math., 124, 307-322 (2010) · Zbl 1189.35255 · doi:10.1111/j.1467-9590.2009.00472.x
[39] Pavlov, M. V., The Gurevich-Zybin system, J. Phys. A: Math. Gen., 38, 3823-3840 (2005) · Zbl 1068.37062 · doi:10.1088/0305-4470/38/17/008
[40] Lou, S. Y.; Feng, B.-F.; Yao, R. X., Multi-soliton solution to the two-component Hunter- Saxton equation, Wave Motion, 65, 17-28 (2016) · Zbl 1467.35290 · doi:10.1016/j.wavemoti.2016.04.006
[41] Yan, L.; Song, J.-F.; Qu, C.-Z., Nonlocal symmetries and geometric integrability of multi- component Camassa-Holm and Hunter-Saxton systems, Chinese Phys. Lett., 28 (2011) · doi:10.1088/0256-307X/28/5/050204
[42] Guan, C. X.; Yin, Z. Y., Global weak solutions and smooth solutions for a two-component Hunter-Saxton system, J. Math. Phys., 52 (2011) · Zbl 1272.76029 · doi:10.1063/1.3653484
[43] Liu, J. J.; Yin, Z. Y., Global weak solutions for a periodic two-component \(\mu \)-Hunter-Saxton system, Monatsh. Math., 168, 503-521 (2012) · Zbl 1325.35010 · doi:10.1007/s00605-011-0346-9
[44] Moon, B.; Liu, Y., Wave breaking and global existence for the generalized periodic two- component Hunter-Saxton system, J. Differ. Eq., 253, 319-355 (2012) · Zbl 1248.35052 · doi:10.1016/j.jde.2012.02.011
[45] Zuo, D. F., A two-component \(\mu \)-Hunter-Saxton equation, Inverse Problems, 26 (2010) · Zbl 1298.37066 · doi:10.1088/0266-5611/26/8/085003
[46] Li, C. H.; Wen, S. Q.; Chen, A. Y., Single peak solitary wave and compacton solutions of the generalized two-component Hunter-Saxton system, Nonlinear Dyn., 79, 1575-1585 (2015) · Zbl 1345.37071 · doi:10.1007/s11071-014-1761-y
[47] Moon, B., Solitary wave solutions of the generalized two-component Hunter-Saxton system, Nonlinear Anal., 89, 242-249 (2013) · Zbl 1282.35126 · doi:10.1016/j.na.2013.05.004
[48] Hunter, J. K.; Saxton, R., Dynamics of director fields, SIAM J. Appl. Math., 51, 1498-1521 (1991) · Zbl 0761.35063 · doi:10.1137/0151075
[49] Wang, G. H.; Liu, Q. P.; Mao, H., The modified Camassa-Holm equation: Bäcklund transformation and nonlinear superposition formula, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1518.35569 · doi:10.1088/1751-8121/ab7136
[50] Mao, Hui; Wang, Gaihua, Bäcklund transformations for the Degasperis-Procesi equation, Theoret. and Math. Phys., 203, 747-750 (2020) · Zbl 1451.37090 · doi:10.1134/S0040577920060045
[51] Mao, H.; Liu, Q. P., The short pulse equation: Bäcklund transformations and applications, Stud. Appl. Math., 145, 791-811 (2020) · Zbl 1455.35058 · doi:10.1111/sapm.12336
[52] Xue, M.; Liu, Q. P.; Mao, H., Bäcklund transformations for the modified short pulse equation and complex modified short pulse equation, Eur. Phys. J. Plus, 137 (2022) · doi:10.1140/epjp/s13360-022-02710-x
[53] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[54] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1099.35111 · doi:10.1017/CBO9780511543043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.