×

Low Mach number limit for the degenerate Navier-Stokes equations in presence of strong stratification. (English) Zbl 1516.35331

Summary: In this paper, we investigate the low Mach and low Froude numbers limit for the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient, in the strong stratification regime. We consider the case of a general pressure law with singular component close to vacuum, and general ill-prepared initial data. We perform our study in the three-dimensional periodic domain. We rigorously justify the convergence to the generalised anelastic approximation, which is used extensively to model atmospheric flows.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
86A10 Meteorology and atmospheric physics
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Almgren, AS; Bell, JB; Rendleman, CA; Zingale, M., Low Mach number modeling of type Ia supernovae. I. Hydrodynamics, Astrophys. J., 637, 2, 922-936 (2006) · doi:10.1086/498426
[2] Bahouri, H.; Chemin, J-Y; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) (2011), Heidelberg: Springer, Heidelberg · Zbl 1227.35004
[3] Bresch, D.; Desjardins, B., Existence of global weak solution for a 2D viscous shallow water equation and convergence to the quasi-geostrophic model, Commun. Math. Phys., 238, 1-2, 211-223 (2003) · Zbl 1037.76012 · doi:10.1007/s00220-003-0859-8
[4] Bresch, D.; Desjardins, B., On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87, 1, 57-90 (2007) · Zbl 1122.35092 · doi:10.1016/j.matpur.2006.11.001
[5] Bresch, D.; Desjardins, B.; Lin, C-K, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equ., 28, 3-4, 843-868 (2003) · Zbl 1106.76436 · doi:10.1081/PDE-120020499
[6] Bresch, D.; Desjardins, B.; Zatorska, E., Two-velocity hydrodynamics in fluid mechanics: part II. Existence of global \(\kappa \)-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities, J. Math. Pures Appl., 104, 4, 801-836 (2015) · Zbl 1359.35125 · doi:10.1016/j.matpur.2015.05.004
[7] Bresch, D.; Gisclon, M.; Lin, C-K, An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit, Math. Model. Numer. Anal., 39, 3, 477-486 (2005) · Zbl 1080.35065 · doi:10.1051/m2an:2005026
[8] Danchin, R., Zero Mach number limit for compressible flows with periodic boundary conditions, Am. J. Math., 124, 6, 1153-1219 (2002) · Zbl 1048.35075 · doi:10.1353/ajm.2002.0036
[9] Danchin, R.; Mucha, P., Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320, 904-925 (2017) · Zbl 1384.35058 · doi:10.1016/j.aim.2017.09.025
[10] Ebin, DG, The motion of slightly compressible fluids viewed as a motion with strong constraining force, Ann. Math. (2), 105, 1, 141-200 (1977) · Zbl 0373.76007 · doi:10.2307/1971029
[11] Fanelli, F., Highly rotating viscous compressible fluids in presence of capillarity effects, Math. Ann., 366, 3-4, 981-1033 (2016) · Zbl 1354.35098 · doi:10.1007/s00208-015-1358-x
[12] Fanelli, F., A singular limit problem for rotating capillary fluids with variable rotation axis, J. Math. Fluid Mech., 18, 4, 625-658 (2016) · Zbl 1359.35148 · doi:10.1007/s00021-016-0256-7
[13] Fanelli, F., Incompressible and fast rotation limit for barotropic Navier-Stokes equations at large Mach numbers, Physica D, 428, 20 (2021) · Zbl 1510.35207 · doi:10.1016/j.physd.2021.133049
[14] Feireisl, E.; Klein, R.; Novotný, A.; Zatorska, E., On singular limits arising in the scale analysis of stratified fluid flows, Math. Models Methods Appl. Sci., 26, 3, 419-443 (2016) · Zbl 1339.35210 · doi:10.1142/S021820251650007X
[15] Feireisl, E.; Málek, J.; Novotný, A.; Straškraba, I., Anelastic approximation as a singular limit of the compressible Navier-Stokes system, Commun. Partial Differ. Equ., 33, 1-3, 157-176 (2008) · Zbl 1146.35073 · doi:10.1080/03605300601088799
[16] Feireisl, E.; Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics (2009), Basel: Birkhäuser Verlag, Basel · Zbl 1176.35126
[17] Feireisl, E.; Novotný, A.; Sun, Y., Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60, 2, 611-631 (2011) · Zbl 1248.35143 · doi:10.1512/iumj.2011.60.4406
[18] Jüngel, A.; Lin, C-K; Wu, K-C, An asymptotic limit of a Navier-Stokes system with capillary effects, Commun. Math. Phys., 329, 2, 725-744 (2014) · Zbl 1297.35169 · doi:10.1007/s00220-014-1961-9
[19] Kitavtsev, G.; Laurençot, P.; Niethammer, B., Weak solutions to lubrication equations in the presence of strong slippage, Methods Appl. An., 18, 2, 183-202 (2011) · Zbl 1282.35133 · doi:10.4310/MAA.2011.v18.n2.a4
[20] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34, 4, 481-524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[21] Klainerman, S.; Majda, A., Compressible and incompressible fluids, Commun. Pure Appl. Math., 35, 5, 629-651 (1982) · Zbl 0478.76091 · doi:10.1002/cpa.3160350503
[22] Klein, R., Scale-dependent asymptotic models for atmospheric flows, Annu. Rev. Fluid Mech., 42, 249-274 (2010) · Zbl 1213.86002 · doi:10.1146/annurev-fluid-121108-145537
[23] Levermore, CD; Oliver, M.; Titi, ES, Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J., 45, 2, 479-510 (1996) · Zbl 0953.76011 · doi:10.1512/iumj.1996.45.1199
[24] Lions, P-L, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics (1996), New York: Oxford University Press, New York · Zbl 0866.76002
[25] Lions, P-L; Masmoudi, N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77, 6, 585-627 (1998) · Zbl 0909.35101 · doi:10.1016/S0021-7824(98)80139-6
[26] Masmoudi, N., Rigorous derivation of the anelastic approximation, J. Math. Pures Appl. (9), 88, 3, 230-240 (2007) · Zbl 1157.35081 · doi:10.1016/j.matpur.2007.06.001
[27] Mellet, A.; Vasseur, AF, On the barotropic compressible Navier-Stokes equations, Commun. Partial Differ. Equ., 32, 1-3, 431-452 (2007) · Zbl 1149.35070 · doi:10.1080/03605300600857079
[28] Mucha, PB; Pokorný, M.; Zatorska, E., Approximate solutions to a model of two-component reactive flow, Discrete Contin. Dyn. Syst. Ser. S, 7, 5, 1079-1099 (2014) · Zbl 1304.35501 · doi:10.3934/dcdss.2014.7.1079
[29] Ogura, Y.; Phillips, N., Scale analysis for deep and shallow convection in the atmosphere, J. Atmos. Sci., 19, 2, 173-179 (1962) · doi:10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
[30] Pedlosky, J., Geophysical Fluid Dynamics (1987), New-York: Springer-Verlag, New-York · Zbl 0713.76005 · doi:10.1007/978-1-4612-4650-3
[31] Tsai, T-P, Lectures on Navier-Stokes Equations. Graduate Studies in Mathematics (2018), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1414.35001 · doi:10.1090/gsm/192
[32] Vasseur, AF; Yu, C., Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206, 3, 935-974 (2016) · Zbl 1354.35115 · doi:10.1007/s00222-016-0666-4
[33] Zatorska, E., On the flow of chemically reacting gaseous mixture, J. Differ. Equ., 253, 12, 3471-3500 (2012) · Zbl 1258.35041 · doi:10.1016/j.jde.2012.08.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.