×

An isoperimetric inequality for the first Steklov-Dirichlet Laplacian eigenvalue of convex sets with a spherical hole. (English) Zbl 1516.35281

Summary: We prove the existence of a maximum for the first Steklov-Dirichlet eigenvalue in the class of convex sets with a fixed spherical hole, under volume constraint. More precisely, if \(\Omega=\Omega_0 \setminus\overline{B}_{R_1} \), where \(B_{R_1}\) is the ball centered at the origin with radius \(R_1>0\) and \(\Omega_0\subset\mathbb{R}^n\), \(n\geq 2\), is an open, bounded and convex set such that \(B_{R_1}\Subset \Omega_0\), then the first Steklov-Dirichlet eigenvalue \(\sigma_1(\Omega)\) has a maximum when \(R_1\) and the measure of \(\Omega\) are fixed. Moreover, if \(\Omega_0\) is contained in a suitable ball, we prove that the spherical shell is the maximum.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
28A75 Length, area, volume, other geometric measure theory
35J25 Boundary value problems for second-order elliptic equations

References:

[1] ; Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego, Functions of bounded variation and free discontinuity problems (2000) · Zbl 0957.49001
[2] 10.1090/trans2/231/04 · Zbl 1217.35127 · doi:10.1090/trans2/231/04
[3] 10.1155/S1025583499000375 · Zbl 1029.26018 · doi:10.1155/S1025583499000375
[4] 10.1016/j.jfa.2012.03.017 · Zbl 1245.35076 · doi:10.1016/j.jfa.2012.03.017
[5] 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-# · Zbl 0971.35055 · doi:10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#
[6] 10.1090/tran/8302 · Zbl 1458.35287 · doi:10.1090/tran/8302
[7] 10.4310/jdg/1620272940 · Zbl 1468.35038 · doi:10.4310/jdg/1620272940
[8] ; Calderón, A.-P., Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, 33 (1961) · Zbl 0195.41103
[9] 10.1017/prm.2020.57 · Zbl 1469.31018 · doi:10.1017/prm.2020.57
[10] 10.1515/anona-2017-0281 · Zbl 1417.35080 · doi:10.1515/anona-2017-0281
[11] 10.1016/S1874-5709(05)80020-4 · Zbl 1091.35045 · doi:10.1016/S1874-5709(05)80020-4
[12] 10.3934/dcdss.2017037 · Zbl 1378.46024 · doi:10.3934/dcdss.2017037
[13] ; Esposito, Luca; Fusco, Nicola; Trombetti, Cristina, A quantitative version of the isoperimetric inequality: the anisotropic case, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4, 4, 619 (2005) · Zbl 1170.52300
[14] 10.1016/j.aim.2019.03.011 · Zbl 1419.35139 · doi:10.1016/j.aim.2019.03.011
[15] 10.1051/cocv/2021109 · Zbl 1523.35230 · doi:10.1051/cocv/2021109
[16] 10.15446/recolma.v49n1.54166 · Zbl 1348.35154 · doi:10.15446/recolma.v49n1.54166
[17] 10.1007/s00526-019-1642-9 · Zbl 1427.35165 · doi:10.1007/s00526-019-1642-9
[18] ; Gritzmann, P.; Wills, J. M.; Wrase, D., A new isoperimetric inequality, J. Reine Angew. Math., 379, 22 (1987) · Zbl 0611.52009
[19] 10.1007/BF01591011 · Zbl 0165.12603 · doi:10.1007/BF01591011
[20] 10.1007/s10231-021-01137-y · Zbl 1497.35327 · doi:10.1007/s10231-021-01137-y
[21] 10.1007/s11511-016-0140-6 · Zbl 1372.52007 · doi:10.1007/s11511-016-0140-6
[22] 10.1017/S0308210500002560 · Zbl 1046.35021 · doi:10.1017/S0308210500002560
[23] 10.1142/9789812773937 · doi:10.1142/9789812773937
[24] 10.1137/1010062 · Zbl 0159.16104 · doi:10.1137/1010062
[25] 10.1017/CBO9781139108133 · Zbl 1255.49074 · doi:10.1017/CBO9781139108133
[26] 10.1051/cocv/2020033 · Zbl 1460.35179 · doi:10.1051/cocv/2020033
[27] 10.3934/cpaa.2020261 · Zbl 1460.35086 · doi:10.3934/cpaa.2020261
[28] 10.1016/0022-247X(61)90031-2 · Zbl 0098.39201 · doi:10.1016/0022-247X(61)90031-2
[29] ; Schneider, Rolf, Convex bodies : the Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, 151 (2014) · Zbl 1287.52001
[30] ; Stein, Elias M., Singular integrals and differentiability properties of functions. Princeton Mathematical Series, 30 (1970) · Zbl 0207.13501
[31] 10.1007/s00013-018-1238-1 · Zbl 1402.53048 · doi:10.1007/s00013-018-1238-1
[32] 10.1007/s00605-020-01466-9 · Zbl 1450.35201 · doi:10.1007/s00605-020-01466-9
[33] 10.1512/iumj.1954.3.53036 · Zbl 0056.09801 · doi:10.1512/iumj.1954.3.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.