×

Asymptotics for third-order nonlinear differential equations: non-oscillatory and oscillatory cases. (English) Zbl 1516.34084

In this paper, the authors study the third-order differential equation \[ (a(t)w'')'+wA(w^2,t)=0, \quad t\geq 0, \] where \(a(t)>0\), \(a'(t)\geq 0\), and the nonlinear function \(A(\cdot,\cdot)\) satisfies \(A(z,t)>0\) for \(z>0\) and certain monotone property. By comparing it with first-order retarded differential equation and differential inequality and using the Kusano-Naito’s and Philos’ approaches, they obtain criteria for the asymptotic behavior of non-oscillatory solutions. This leads to sufficient conditions for the existence of (non-)oscillatory solutions which complement the results in the literature.

MSC:

34D05 Asymptotic properties of solutions to ordinary differential equations
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
Full Text: DOI

References:

[1] for the existence of (non-)oscillatory solutions to (1), complementing the existing literature on the topic. Here, the coefficient function A ∈ C(R + × [t 0 , ∞), R + ) is of one sign, but it will be in-teresting to know how an oscillatory coefficient function affects the analysis of the problem (1) (that is, A ∈ C(R + × [t 0 , ∞), R) may change sign as its second variable t goes to infinity). In addition, Koplatadze-Čanturija [8] and Fukagai-Kusano [6] pointed out the existence of a sort of “duality” be-tween retarded and advanced differential equations, with related positive, negative and sign changing coefficient functions. So, a similar duality can be investigated in respect to the equation (1).
[2] R. Agarwal, S. Grace and D. O’Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Acad. Publ., Dordrecht, 2000. · Zbl 0954.34002
[3] B. Baculíková and J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Modelling 52 (2010), 215-226. doi:10.1016/j.mcm.2010.02.011. · Zbl 1201.34097 · doi:10.1016/j.mcm.2010.02.011
[4] B. Baculíková and J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl. 62 (2011), 4472-4478. doi:10.1016/j.camwa.2011.10.024. · Zbl 1236.34092 · doi:10.1016/j.camwa.2011.10.024
[5] J. Džurina, Oscillation theorems for neutral differential equations of higher order, Czechoslovak Math. J. 54(129) (2004), 107-117. doi:10.1023/B:CMAJ.0000027252.29549.bb. · Zbl 1057.34074 · doi:10.1023/B:CMAJ.0000027252.29549.bb
[6] S. Fišnarová and R. Mařík, Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments, Math. Slovaca 70(2) (2020), 389-400. doi:10.1515/ms-2017-0358. · Zbl 1505.34106 · doi:10.1515/ms-2017-0358
[7] N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating arguments, Ann. Mat. Pura Appl. (4) 136 (1984), 95-117. doi:10.1007/BF01773379. · Zbl 0552.34062 · doi:10.1007/BF01773379
[8] J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. · Zbl 0352.34001
[9] R.G. Koplatadze and T.A.Čanturija, On Oscillatory Properties of Differential Equations with Deviating Arguments, Tbil-isi Univ. Press, Tbilisi, 1977, (Russian).
[10] T. Kusano, O. Akio and U. Hiroyuki, Oscillation theory for a class of second order differential equations with application to partial differential equations, Japan. J. Math. 19 (1993), 131-147. doi:10.4099/math1924.19.131. · Zbl 0792.34033 · doi:10.4099/math1924.19.131
[11] T. Kusano and M. Naito, Nonlinear oscillation of second order differential equations with retarded argument, Ann. Mat. Pura Appl. (4) 106 (1975), 171-185. doi:10.1007/BF02415027. · Zbl 0316.34083 · doi:10.1007/BF02415027
[12] T. Kusano and M. Naito, Nonlinear oscillation of fourth order differential equations, Can. J. Math. 28(4) (1976), 840-852. doi:10.4153/CJM-1976-081-0. · Zbl 0432.34022 · doi:10.4153/CJM-1976-081-0
[13] G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 110, Dekker, New York, 1987. · Zbl 0832.34071
[14] T. Li and Y.V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett. 105 (2020), 106293. doi:10.1016/j.aml.2020.106293. · Zbl 1436.34067 · doi:10.1016/j.aml.2020.106293
[15] Z. Nehari, Oscillation criteria for second order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428-445. doi:10.1090/S0002-9947-1957-0087816-8. · Zbl 0078.07602 · doi:10.1090/S0002-9947-1957-0087816-8
[16] C. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay, Arch. Math. (Basel) 36 (1981), 168-178. doi:10.1007/BF01223686. · Zbl 0463.34050 · doi:10.1007/BF01223686
[17] C.C. Travis, Oscillation theorems for second-order differential equations with functional arguments, Proc. Amer. Math. Soc. 31 (1972), 199-202. doi:10.1090/S0002-9939-1972-0285789-X. · Zbl 0235.34141 · doi:10.1090/S0002-9939-1972-0285789-X
[18] C. Zhang, R.P. Agarwal, M. Bohner and T. Li, New results for oscillatory behavior of even-order half-linear delay differ-ential equations, Appl. Math. Lett. 26 (2013), 179-183. doi:10.1016/j.aml.2012.08.004. · Zbl 1263.34094 · doi:10.1016/j.aml.2012.08.004
[19] C. Zhang, T. Li and S. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci. 201 (2014), 296-308. doi:10.1007/s10958-014-1990-0. · Zbl 1314.34140 · doi:10.1007/s10958-014-1990-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.