×

Size of the zero set of solutions of elliptic PDEs near the boundary of Lipschitz domains with small Lipschitz constant. (English) Zbl 1516.31008

Summary: Let \(\Omega\subset\mathbb{R}^d\) be a \(C^1\) domain or, more generally, a Lipschitz domain with small Lipschitz constant and \(A(x)\) be a \(d \times d\) uniformly elliptic, symmetric matrix with Lipschitz coefficients. Assume \(u\) is harmonic in \(\Omega\), or with greater generality \(u\) solves \(\operatorname{div}(A(x)\nabla u) = 0\) in \(\Omega\), and \(u\) vanishes on \(\Sigma = \partial\Omega\cap B\) for some ball \(B\). We study the dimension of the singular set of \(u\) in \(\Sigma\), in particular we show that there is a countable family of open balls \((B_i)_i\) such that \(u|_{B_i\cap\Omega}\) does not change sign and \(K\backslash\bigcup_i B_i\) has Minkowski dimension smaller than \(d-1-\epsilon\) for any compact \(K\subset\Sigma\). We also find upper bounds for the \((d-1)\)-dimensional Hausdorff measure of the zero set of \(u\) in balls intersecting \(\Sigma\) in terms of the frequency. As a consequence, we prove a new unique continuation principle at the boundary for this class of functions and show that the order of vanishing at all points of \(\Sigma\) is bounded except for a set of Hausdorff dimension at most \(d-1-\epsilon\).

MSC:

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
35J62 Quasilinear elliptic equations
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Ancona, A., On positive harmonic functions in cones and cylinders, Rev. Mat. Iberoam., 28, 201-230 (2010) · Zbl 1247.31006
[2] Adolfsson, V.; Escauriaza, L., \(C^{1,\alpha }\) domains and unique continuation at the boundary, Commun. Pure Appl. Math., 50, 10, 935-969 (1997) · Zbl 0899.31004 · doi:10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H
[3] Adolfsson, V.; Escauriaza, L.; Kenig, CE, Convex domains and unique continuation at the boundary, Rev. Mat. Iberoam., 11, 3, 513-525 (1995) · Zbl 0840.31005 · doi:10.4171/RMI/182
[4] Astala, K.; Iwaniec, T.; Martin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (2008), Princeton: (PMS-48) Princeton University Press, Princeton · doi:10.1515/9781400830114
[5] Alessandrini, G.; Rondi, L.; Rosset, E.; Vessella, S., The stability for the Cauchy problem for elliptic equations, Inverse Probl., 25, 12 (2009) · Zbl 1190.35228 · doi:10.1088/0266-5611/25/12/123004
[6] Bourgain, J.; Wolff, T., A remark on gradients of harmonic functions in dimension \(\ge 3\), Colloq. Math., 60/61, 1, 253-260 (1990) · Zbl 0731.31006 · doi:10.4064/cm-60-61-1-253-260
[7] Burq, N., Zuily, C.: A remark on quantitative unique continuation from subsets of the boundary of positive measure (2021). arXiv:2110.14282
[8] Dahlberg, B., On estimates for harmonic measure, Arch. Ration. Mech. Anal., 65, 272-288 (1977) · Zbl 0406.28009 · doi:10.1007/BF00280445
[9] Dong, H.; Escauriaza, L.; Kim, S., On \(C^1, C^2\), and weak type-(1, 1) estimates for linear elliptic operators: part II, Math. Ann., 370, 1, 417-435 (2018)
[10] Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Reimannian manifolds. Inventiones Math. 93 (1998)
[11] De Silva, D.; Savin, O., A short proof of boundary Harnack inequality, J. Differ. Equ., 269, 2419-2429 (2020) · Zbl 1439.35110 · doi:10.1016/j.jde.2020.02.004
[12] Fefferman, RA; Kenig, CE; Pipher, J., The theory of weights and the Dirichlet problem for elliptic equations, Ann. Math. (2), 134, 1, 65-124 (1991) · Zbl 0770.35014 · doi:10.2307/2944333
[13] Fernández-Real, X., Ros-Oton, X.: Regularity Theory for Elliptic PDE. Forthcoming book (2020)
[14] Garofalo, N.; Lin, F-H, Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation, Indiana Univ. Math. J., 35, 2, 245-268 (1986) · Zbl 0678.35015 · doi:10.1512/iumj.1986.35.35015
[15] Garnett, J.; Marshall, D., Harmonic Measure. (New Mathematical Monographs) (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1077.31001 · doi:10.1017/CBO9780511546617
[16] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order (1983), Berlin: Springer, Berlin · Zbl 0562.35001
[17] Grüter, M.; Widman, KO, The Green function for uniformly elliptic equations, Manuscr. Math., 37, 303-342 (1982) · Zbl 0485.35031 · doi:10.1007/BF01166225
[18] Kenig, CE; Toro, T., Free boundary regularity for harmonic measures and Poisson kernels, Ann. Math., 150, 2, 369-454 (1999) · Zbl 0946.31001 · doi:10.2307/121086
[19] Kukavica, I.; Nyström, K., Unique continuation on the boundary for Dini domains, Proc. Am. Math. Soc., 126, 2, 441-446 (1998) · Zbl 0891.31006 · doi:10.1090/S0002-9939-98-04065-9
[20] Kenig, CE; Shen, Z., Layer potential methods for elliptic homogenization problems, Commun. Pure Appl. Math., 64, 1, 1-44 (2011) · Zbl 1213.35063 · doi:10.1002/cpa.20343
[21] Kenig, CE; Zhao, Z., Boundary unique continuation on \(C^1\)-Dini domains and the size of the singular set, Arch. Ration. Mech. Anal., 245, 1-88 (2022) · Zbl 1540.31003 · doi:10.1007/s00205-022-01771-7
[22] Kenig, C.E., Zhao, Z.: Expansion of harmonic functions near the boundary of Dini domains (2021). arXiv:2107.06324
[23] Lin, F-H, Nodal sets of solutions of elliptic and parabolic equations, Commun. Pure Appl. Math., 44, 287-308 (1991) · Zbl 0734.58045 · doi:10.1002/cpa.3160440303
[24] Logunov, A., Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. Math. (2), 187, 1, 221-239 (2018) · Zbl 1384.58020 · doi:10.4007/annals.2018.187.1.4
[25] Logunov, A., Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. Math. (2), 187, 1, 241-262 (2018) · Zbl 1384.58021 · doi:10.4007/annals.2018.187.1.5
[26] Logunov, A., Malinnikova, E.: Lecture notes on quantitative unique continuation for solution of second order elliptic equations (2019). arXiv:1903.10619
[27] Logunov, A.; Malinnikova, E., Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, Oper. Theory Adv. Appl., 261, 333-344 (2018) · Zbl 1414.31004
[28] Logunov, A.; Malinnikova, E.; Nadirashvili, N.; Nazarov, F., The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions, Geom. Funct. Anal., 31, 5, 1219-1244 (2021) · Zbl 1486.35011 · doi:10.1007/s00039-021-00581-5
[29] McCurdy, S.: (2019) Unique continuation on convex domains. arXiv:1907.02640
[30] Naber, A.; Valtorta, D., Volume estimates on the critical sets of solutions to elliptic PDEs, Commun. Pure Appl. Math., 70, 10, 1835-1897 (2017) · Zbl 1376.35021 · doi:10.1002/cpa.21708
[31] Safonov, M.: Boundary estimates for positive solutions to second order elliptic equations. Compl. Var. Elliptic Eq. (2008)
[32] Tolsa, X., Jump formulas for singular integrals and layer potentials on rectifiable sets, Proc. Am. Math. Soc., 148, 11, 4755-4767 (2020) · Zbl 1446.42021 · doi:10.1090/proc/15199
[33] Tolsa, X.: Unique continuation at the boundary for harmonic functions in \({C}^1\) domains and Lipschitz domains with small constants. arXiv:2004.10721. To appear in Comm. Pure Appl. Math. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.