×

A note on Garside monoids and \({\mathcal{M}} \)-braces. (English) Zbl 1516.20139

Summary: We define an algebraic structure similar to that of a semiring, but without some of the requirements. As it is somehow also similar to the structure of left brace, we call it an \({\mathcal{M}} \)-brace. We present a connection between Garside monoids and more generally lcm-monoids with this algebraic structure. An lcm-monoid \(M\) is a left-cancellative monoid such that 1 is the unique invertible element in \(M\), and every pair of elements in \(M\) admit an lcm with respect to left-divisibility. The class of lcm-monoids contains the Gaussian, quasi-Garside and Garside monoids.

MSC:

20M75 Generalizations of semigroups
20M05 Free semigroups, generators and relations, word problems
16Y60 Semirings
Full Text: DOI

References:

[1] Bergelson, V.; Hindman, N.; Blass, A., Partition theorems for spaces of variable words, Proc. Lond. Math. Soc., 68, 3, 449-476 (1994) · Zbl 0809.04005 · doi:10.1112/plms/s3-68.3.449
[2] Cedo, F., Left braces: solutions of the Yang-Baxter equation, Adv. Group Theory Appl., 5, 33-90 (2018) · Zbl 1403.16033
[3] Cedo, F.; Jespers, E.; Okninski, J., Braces and the Yang—Baxter equation, Commun. Math. Phys., 327, 101-116 (2014) · Zbl 1287.81062 · doi:10.1007/s00220-014-1935-y
[4] Chouraqui, F., Garside groups and the Yang-Baxter equation, Commun. Algebra, 38, 4441-4460 (2010) · Zbl 1216.16023 · doi:10.1080/00927870903386502
[5] Chouraqui, F.; Godelle, E., Folding of set theoretical solutions of the Yang-Baxter equation, Algebra Represent. Theory, 15, 1277-1290 (2012) · Zbl 1264.16038 · doi:10.1007/s10468-011-9288-0
[6] Chouraqui, F.; Godelle, E., Finite quotients of \(I\)-type groups, Adv. Math., 258, 46-68 (2014) · Zbl 1344.20051 · doi:10.1016/j.aim.2014.02.009
[7] Chouraqui, F., An algorithmic construction of group automorphisms and the quantum Yang-Baxter equation, Commun. Algebra, 46, 11, 4710-4723 (2018) · Zbl 1398.16033 · doi:10.1080/00927872.2018.1455098
[8] Chouraqui, F.: The Yang-Baxter equation, braces, and Thompson’s group \(F\), arXiv:2105.12445 · Zbl 1522.20227
[9] Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. American Mathematical Society Surveys, vol. 7, American Mathematical Society, Providence, RI (1961) · Zbl 0111.03403
[10] Dehornoy, P.; Paris, L., Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. Lond. Math. Soc., 79, 569-604 (1999) · Zbl 1030.20021 · doi:10.1112/S0024611599012071
[11] Dehornoy, P., Groupes de Garside, Ann. Sci. Ec. Norm. Sup., 35, 267-306 (2002) · Zbl 1017.20031 · doi:10.1016/S0012-9593(02)01090-X
[12] Dehornoy, P., The subword reversing method, Int. J. Algebra Comput., 21, 71-118 (2011) · Zbl 1256.20053 · doi:10.1142/S0218196711006091
[13] Dehornoy, P., Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs, Adv. Math., 282, 93-127 (2015) · Zbl 1326.20039 · doi:10.1016/j.aim.2015.05.008
[14] Dehornoy, P., Braids and Self-Distributivity, Progress in Mathematics (2012), Basel: Birkhäuser, Basel
[15] Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 24. European Math. Soc, Zürich (2015) · Zbl 1370.20001
[16] Gateva-Ivanova, T., Garside structures on monoids with quadratic square-free relations, Algebra Represent. Theory, 14, 779-802 (2011) · Zbl 1246.81079 · doi:10.1007/s10468-010-9220-z
[17] Gebhardt, V.; Tawn, S., Zappa-Szép products of Garside monoids, Math. Z., 282, 341-369 (2016) · Zbl 1380.20037 · doi:10.1007/s00209-015-1542-4
[18] Lawson, MV, Inverse Semigroups: The Theory of Partial Symmetries (1998), Singapore: World Scientific, Singapore · Zbl 1079.20505 · doi:10.1142/3645
[19] Ore, Ø., Linear equations in non-commutative fields, Ann. Math., 34, 480-508 (1933) · Zbl 0007.15101 · doi:10.2307/1968173
[20] Picantin, M., Automatic structures for torus link groups, J. Knot Theory Ramifications, 12, 833-866 (2003) · Zbl 1063.20047 · doi:10.1142/S0218216503002627
[21] Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 153-170 (2007) · Zbl 1115.16022 · doi:10.1016/j.jalgebra.2006.03.040
[22] Smoktunowicz, A., On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation, Trans. Am. Math. Soc., 370, 6535-6564 (2018) · Zbl 1440.16040 · doi:10.1090/tran/7179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.