×

On the \(K\)-theory of regular coconnective rings. (English) Zbl 1516.19002

The main technical theorem is an extension of known devissage theorems in algebraic \(K\)-theory: let \(F \colon \mathcal{C} \to \mathcal{D}\) be an exact functor of stable \(\infty\)-categories such that the image of \(F\) generates \(\mathcal{D}\) under finite colimits and retracts, and assume moreover that \(\mathcal{C}\) carries a bounded t-structure \((\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})\) such that \(F\) is fully faithful on the heart \(\mathcal{C}^\heartsuit\). The authors show that \(\mathcal{D}\) then also carries a bounded t-structure, and \(F\) restricts to a functor \(\mathcal{C}^\heartsuit \to \mathcal{D}^\heartsuit\) satisfying the assumptions of Quillen’s devissage theorem. Combining this with Barwick’s theorem of the heart, it follows that \(F\) induces an equivalence on connective algebraic \(K\)-theory. By a vanishing result of Antieau-Gepner-Heller, the induced map \(K_{-1}(F)\) is also an equivalence since both domain and codomain are trivial.
As a first application, the authors show that, if \(R\) is a coconnective ring spectrum such that \(\pi_0(R)\) is left regular coherent and the \(-1\)-truncation \(\tau_{\leq -1}(R)\) has Tor-amplitude in \([-\infty,-1]\) as a right \(\pi_0(R)\)-module, then the induced map \(K(\pi_0(R)) \to K(R)\) is an equivalence.
Using work of Land and Tamme, they also formulate a criterion when connective algebraic \(K\)-theory preserves pushouts of idempotent complete stable \(\infty\)-categories, and conclude that \(K\)-theory preserves pushouts of discrete rings \(B \sqcup_A C\) along right faithfully flat maps over a left regular coherent ring \(A\).
Further applications include \(\mathbb{A}^1\)-invariance of the algebraic \(K\)-theory of stable \(\infty\)-categories with bounded t-structure and the existence of bounded t-structures on categories of representations.
The article contains many examples illustrating both applications and limitations of the main results.

MSC:

19D99 Higher algebraic \(K\)-theory
18N60 \((\infty,1)\)-categories (quasi-categories, Segal spaces, etc.); \(\infty\)-topoi, stable \(\infty\)-categories

References:

[1] Antieau, B., Gepner, David, Heller, Jeremiah: \(K\)-theoretic obstructions to bounded t-structures, Invent. Math., 216, 1, 241-300 (2019) · Zbl 1430.18009 · doi:10.1007/s00222-018-00847-0
[2] Barwick, C., On exact \(\infty \)-categories and the theorem of the heart, Compos. Math., 151, 11, 2160-2186 (2015) · Zbl 1333.19003 · doi:10.1112/S0010437X15007447
[3] Blumberg, AJ; Gepner, D.; Tabuada, G., A universal characterization of higher algebraic \(K\)-theory, Geom. Topol., 17, 2, 733-838 (2013) · Zbl 1267.19001 · doi:10.2140/gt.2013.17.733
[4] Bachmann, T.; Khan, AA; Ravi, C.; Sosnilo, V., Categorical Milnor squares and K-theory of algebraic stacks, Selecta Math, 28, 85 (2020) · Zbl 1504.19004 · doi:10.1007/s00029-022-00796-w
[5] Burklund, R., Levy, I.: Some aspects of noncommutative geometry, available online here and here (2023)
[6] Davis, J.F.: Some remarks on nil groups in algebraic \(K\)-theory, (2008)
[7] Gersten, SM, \(K\)-theory of free rings, Comm. Algebra, 1, 1, 39-64 (1974) · Zbl 0299.18006 · doi:10.1080/00927877408548608
[8] Glaz, S., Commutative Coherent Rings. Lecture Notes in Mathematics (1989), Berlin: Springer-Verlag, Berlin · Zbl 0745.13004 · doi:10.1007/BFb0084570
[9] Hesselholt, L., On the \(K\)-theory of the coordinate axes in the plane, Nagoya Math. J., 185, 93-109 (2007) · Zbl 1136.19002 · doi:10.1017/S0027763000025757
[10] Hesselholt, L.; Madsen, I., On the K-theory of nilpotent endomorphisms, Contemp. Math., 271, 127-140 (2001) · Zbl 0992.19002 · doi:10.1090/conm/271/04353
[11] Keller, B.; Nicolás, P., Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not., 2013, 5, 1028-1078 (2013) · Zbl 1312.18007 · doi:10.1093/imrn/rns009
[12] Land, M.; Tamme, G., On the \(K\)-theory of pullbacks, Annal. Math., 190, 3, 877 (2019) · Zbl 1427.19002 · doi:10.4007/annals.2019.190.3.4
[13] Land, M., Tamme, G.: On the \(K\)-theory of pushouts. (2022)
[14] Lurie, J.: Rotation invariance in algebraic \(K\)-theory. available online (2015)
[15] Lurie, J.: Higher Algebra. available online (2017)
[16] Lurie, J.: Spectral Algebraic Geometry. available online (2018)
[17] Mathew, A., The Galois group of a stable homotopy theory, Adv. Math., 291, 403-541 (2016) · Zbl 1338.55009 · doi:10.1016/j.aim.2015.12.017
[18] Mochizuki, S., Sannai, A.: Homotopy invariance of higher \(K\)-theory for abelian categories. (2013)
[19] Neeman, A., A counterexample to vanishing conjectures for negative \(K\)-theory, Invent. Math., 225, 2, 427-452 (2021) · Zbl 1484.19002 · doi:10.1007/s00222-021-01034-4
[20] Orlov, D., Smooth and proper noncommutative schemes and gluing of dg categories, Adv. Math., 302, 59-105 (2016) · Zbl 1368.14031 · doi:10.1016/j.aim.2016.07.014
[21] Quillen, D.; Bass, H., Higher algebraic \(K\)-theory: I, Higher K-Theories, 85-147 (1973), Heidelberg, Berlin: Springer, Heidelberg, Berlin · Zbl 0292.18004 · doi:10.1007/BFb0067053
[22] Schlichting, M., Negative \(K\)-theory of derived categories, Math. Z., 253, 1, 97-134 (2006) · Zbl 1090.19002 · doi:10.1007/s00209-005-0889-3
[23] Tamme, G., Excision in algebraic \(K\)-theory revisited, Compos. Math., 154, 9, 1801-1814 (2018) · Zbl 1395.18013 · doi:10.1112/S0010437X18007236
[24] Thomason, RW, The classification of triangulated subcategories, Compos. Math., 105, 1, 1-27 (1997) · Zbl 0873.18003 · doi:10.1023/A:1017932514274
[25] Waldhausen, F., Algebraic \(K\)-theory of generalized free products, Ann. Math., 108, 1, 135-204 (1978) · Zbl 0397.18012 · doi:10.2307/1971165
[26] Waldhausen, F.: Algebraic \(K\)-theory of topological spaces. I. In I. In Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part, vol. 1, pp. 35-60, (1978) · Zbl 0414.18010
[27] Weibel, CA, The \(K\)-Book: An Introduction to Algebraic \(K\)-Theory (2013), RI: American Mathematical Society Providence, RI · Zbl 1273.19001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.