×

Yoneda lemma for simplicial spaces. (English) Zbl 1516.18018

This paper studies the Yoneda lemma for arbitrary simplicial spaces by introducing left fibrations of simplicial spaces and studying their associated model structure. P. Boavida de Brito [Contemp. Math. 708, 19–44 (2018; Zbl 1405.55023)] developed left fibrations of Segal spaces. The author has written several papers concerned wtih Cartesian fibrations of complete Segal spaces [N. Rasekh, J. Homotopy Relat. Struct. 16, No. 4, 563–604 (2021; Zbl 1492.18022); High. Struct. 7, No. 1, 40–73 (2023); N. Rasekh, Homology Homotopy Appl. 24, No. 2, 135–161 (2022; Zbl 1512.18006)]. The key ideas of this paper have also been generalized in [N. Rasekh, “Yoneda Lemma for \(\mathcal{D}\)-simplicial spaces”, Preprint, arXiv:2108.06168] to the setting of \((\infty,n)\)-categories in the particular model of \(n\)-fold complete Segal spaces. Independently J. Nuiten [“On straightening for Segal spaces”, Preprint, arXiv:2108.11431] has also studied fibrations of \(n\)-fold complete Segal spaces.
The synopsis of the paper goes as follows.
§ 1
reviews the classical Yoneda lemma (§1.1), the Grothendieck construction (§1.2) and the fibrational Yoneda lemma for categories (§1.3).
§ 2
reviews necessary background concepts such as Joyal-Tierney calculus (§2.1), spaces (§2.2), simplicial spaces (§2.3), the Reedy model structure (§2.4) and complete Segal spaces (§2.6).
§ 3
begins the study of left fibrations. §3.1 introduces left fibrations, giving various alternative characterizations. §3.2 defines a model structure for left fibrations, the covariant model structure, over arbitrary simplicial spaces (Theorem 3.12). §3.3 studies left fibrations over Segal spaces, particularly establishing the Yoneda lemma for Segal spaces (Theorem 3.49).
§ 4
consists of two subsections. §4.1 focuses on the covariant model structure over nerves of categories, particularly establishing the Grothendieck construction (Theorem 4.18). §4.2 establishes the recognition principle for covariant equivalences (Theorem 4.41).
§ 5
studies the relation between left fibrations and complete Segal spaces. §5.1 proves the invariance of the covariant model structure (Theorem 5.1) with several significant implications. §5.2 applies these results to the study of colimits in Segal spaces.
Appendix A
reviews some key lemmas about model categories.
Appendix B
establishes the Quillen equivalence between the covariant model structure for simplicial spaces and that for simplicial sets studied in [J. Lurie, Higher topos theory. Princeton, NJ: Princeton University Press (2009; Zbl 1175.18001)].

MSC:

18N60 \((\infty,1)\)-categories (quasi-categories, Segal spaces, etc.); \(\infty\)-topoi, stable \(\infty\)-categories
18N40 Homotopical algebra, Quillen model categories, derivators
18N50 Simplicial sets, simplicial objects
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)

References:

[1] Ayala, D., Francis, J.: Flagged higher categories. In: Topology and Quantum Theory in Interaction, vol. 718 of Contemp. Math., pp. 137-173. American Mathematical Society, Providence, RI (2018) · Zbl 1423.18002
[2] Barwick, Cl.: (infinity, n)-Cat as a closed model category. ProQuest LLC. Ann Arbor, MI (2005). Thesis (Ph.D.)-University of Pennsylvania
[3] Bergner, J.E.: A model category structure on the category of simplicial categories. Trans. Am. Math. Soc. 359(5), 2043-2058 (2007) · Zbl 1114.18006
[4] Bergner, J.E.: A survey of \((\infty ,1)\)-categories. In: Towards Higher Categories, vol. 152 of IMA Vol. Math. Appl., pp. 69-83. Springer, New York (2010) · Zbl 1200.18011
[5] Bergner, J.E.: A survey of models for \((\infty , n)\)-categories. Handbook of Homotopy Theory, edited by Haynes Miller, Chapman & Hall/CRC, pp. 263-295 (2020) · Zbl 1476.55043
[6] Bergner, J.E.: The homotopy theory of \((\infty , 1)\)-categories. London Mathematical Society Student Texts, vol. 90. Cambridge University Press, Cambridge (2018) · Zbl 1396.18001
[7] Bergner, JE, Three models for the homotopy theory of homotopy theories, Topology, 46, 4, 397-436 (2007) · Zbl 1119.55010 · doi:10.1016/j.top.2007.03.002
[8] Bergner, JE; Rezk, C., Comparison of models for \((\infty , n)\)-categories. I, Geom. Topol., 17, 4, 2163-2202 (2013) · Zbl 1273.18031 · doi:10.2140/gt.2013.17.2163
[9] Bergner, JE; Rezk, C., Comparison of models for \((\infty , n)\)-categories. II, J. Topol., 13, 4, 1554-1581 (2020) · Zbl 1461.18017 · doi:10.1112/topo.12167
[10] Bergner, JE; Osorno, AM; Ozornova, V.; Rovelli, M.; Scheimbauer, CI, 2-Segal sets and the Waldhausen construction, Topology Appl., 235, 445-484 (2018) · Zbl 1422.55036 · doi:10.1016/j.topol.2017.12.009
[11] Boardman, J.M., Vogt, R.M.: Homotopy Invariant Algebraic Structures on Topological Spaces. Lecture Notes in Mathematics, vol. 347. Springer, Berlin (1973) · Zbl 0285.55012
[12] Buchholtz, U., Weinberger, J.: Synthetic fibered \((\infty ,1)\)-category theory. arXiv preprint (2021). arXiv:2105.01724
[13] Calaque, D.; Scheimbauer, C., A note on the \((\infty, n)\)-category of cobordisms, Algebr. Geom. Topol., 19, 2, 533-655 (2019) · Zbl 1420.18012 · doi:10.2140/agt.2019.19.533
[14] Campion, T., Kapulkin, K., Maehara, Y.: Comical sets: a cubical model for \((\infty ,n)\)-categories. arXiv preprint (2020). arXiv:2005.07603v2
[15] Cisinski, D.-C.: Batanin higher groupoids and homotopy types. In: Categories in Algebra, Geometry and Mathematical Physics, vol. 431 of Contemp. Math., pp. 171-186. American Mathematical Society, Providence, RI (2007)
[16] Cisinski, D.-C.: Higher categories and homotopical algebra. Cambridge Studies in Advanced Mathematics, vol. 180. Cambridge University Press, Cambridge (2019) · Zbl 1430.18001
[17] Conduché, F., Au sujet de l’existence d’adjoints à droite aux foncteurs “image réciproque” dans la catégorie des catégories, C. R. Acad. Sci. Paris Sér. A-B, 275, A891-A894 (1972) · Zbl 0242.18012
[18] de Brito, P.B., Moerdijk, I.: Dendroidal spaces, \( \Gamma \)-spaces and the special Barratt-Priddy-Quillen theorem. J. Reine Angew. Math. 760, 229-265 (2020) · Zbl 1512.55018
[19] de Brito, P.B.: Segal objects and the Grothendieck construction. In: An Alpine Bouquet of Algebraic Topology, vol. 708 of Contemp. Math., pp 19-44. American Mathematical Society, Providence, RI (2018) · Zbl 1405.55023
[20] Dugger, D., Universal homotopy theories, Adv. Math., 164, 1, 144-176 (2001) · Zbl 1009.55011 · doi:10.1006/aima.2001.2014
[21] Dwyer, WG; Spalinski, J., Homotopy theories and model categories, Handb. Algebraic Topol., 73, 126 (1995) · Zbl 0869.55018
[22] Dyckerhoff, T., Kapranov, M.: Higher Segal spaces. Lecture Notes in Mathematics, vol. 2244. Springer, Cham (2019) · Zbl 1459.18001
[23] Gálvez-Carrillo, I., Kock, J., Tonks, A.: Corrigendum to Decomposition spaces, incidence algebras and Möbius inversion II: completeness, length filtration, and finiteness. [Adv. Math. 333 (2018) 1242-1292]. Adv. Math., 371, 107267 (2020) · Zbl 1403.18016
[24] Gálvez-Carrillo, I.; Kock, J.; Tonks, A., Decomposition spaces, incidence algebras and Möbius inversion I: basic theory, Adv. Math., 331, 952-1015 (2018) · Zbl 1403.00023 · doi:10.1016/j.aim.2018.03.016
[25] Gambino, N.; Kock, J., Polynomial functors and polynomial monads, Math. Proc. Camb. Philos. Soc., 154, 1, 153-192 (2013) · Zbl 1278.18013 · doi:10.1017/S0305004112000394
[26] Goerss, P.G., Jardine, J.F.: Simplicial homotopy theory. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel (2009). Reprint of the 1999 edition [MR1711612]
[27] Gray, J.W.: Fibred and cofibred categories. In: Proceedings of Conference Categorical Algebra (La Jolla, Calif., 1965), pp. 21-83. Springer, New York (1966) · Zbl 0192.10701
[28] Grothendieck, A.: Revêtements étales et groupe fondamental. Institut des Hautes Études Scientifiques, Paris, 1963. Troisième édition, corrigée, Séminaire de Géométrie Algébrique (1960/61)
[29] Hackney, P., Kock, J.: Culf maps and edgewise subdivision. arXiv preprint (2022). arXiv:2210.11191
[30] Hebestreit, F., Heuts, G., Ruit, J.: A short proof of the straightening theorem. arXiv preprint (2021). arXiv:2111.00069
[31] Heuts, G., Moerdijk, I.: Left fibrations and homotopy colimits II. arXiv preprint (2016). arXiv:1602.01274v1 · Zbl 1312.55015
[32] Heuts, G., Moerdijk, I.: Simplicial and Dendroidal Homotopy Theory. 2022. To appear in Ergebnisse der Mathematik · Zbl 1512.18001
[33] Heuts, G.; Moerdijk, I., Left fibrations and homotopy colimits, Math. Z., 279, 3-4, 723-744 (2015) · Zbl 1312.55015 · doi:10.1007/s00209-014-1390-7
[34] Hirschhorn, P.S.: Model Categories and their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence, RI (2003) · Zbl 1017.55001
[35] Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence, RI (1999) · Zbl 0909.55001
[36] Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Vol. 1, vol. 43 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York (2002) · Zbl 1071.18001
[37] Joyal, A., Tierney, M.: Quasi-categories vs Segal spaces. In: Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pp. 277-326. American Mathematical Society, Providence, RI (2007) · Zbl 1138.55016
[38] Joyal, A.: Notes on quasi-categories. preprint (2008). https://www.math.uchicago.edu/ may/IMA/Joyal.pdf. Accessed 08 Feb 2021
[39] Joyal, A.: The theory of quasi-categories and its applications (2008). https://mat.uab.cat/ kock/crm/hocat/advanced-course/Quadern45-2.pdf. Accessed 08 Feb 2021
[40] Kazhdan, D.; Varshavskiĭ, Y., The Yoneda lemma for complete Segal spaces, Funktsional. Anal. i Prilozhen., 48, 2, 3-38 (2014) · Zbl 1310.18007 · doi:10.1007/s10688-014-0050-3
[41] Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series, vol. 64. Cambridge University Press, Cambridge, New York (1982) · Zbl 0478.18005
[42] Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009) · Zbl 1175.18001
[43] Lurie, J.: On the classification of topological field theories. In: Current Developments in Mathematics, 2008, pp. 129-280. Int. Press, Somerville, MA (2009) · Zbl 1180.81122
[44] Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic. Universitext. Springer, New York, (1994). A first introduction to topos theory, Corrected reprint of the (1992) edition · Zbl 0822.18001
[45] Mac Lane, S.: Categories for the Working Mathematician, vol. 5 of Graduate Texts in Mathematics, second edition. Springer, New York (1998) · Zbl 0906.18001
[46] Martínez, C.B.: Limits and colimits of synthetic \(\infty \)-categories. arXiv preprint (2022). arXiv:2202.12386
[47] Martini, L.: Yoneda’s lemma for internal higher categories. arXiv preprint (2021). arXiv:2103.17141
[48] Moerdijk, I.: Bisimplicial sets and the group-completion theorem. In: Algebraic \(K\)-Theory: Connections with Geometry and Topology (Lake Louise, AB, 1987), vol. 279 of NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., pp. 225-240. Kluwer Acad. Publ., Dordrecht (1989) · Zbl 0708.18008
[49] Nguyen, H.K.: Covariant and contravariant homotopy theories. arXiv preprint, (2019). arXiv:1908.06879v1
[50] Nuiten, J.: On straightening for Segal spaces. arXiv preprint (2021). arXiv:2108.11431
[51] Quillen, D.: Higher algebraic \(K\)-theory. I. In: Algebraic \(K\)-Theory, I: Higher \(K\)-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147. Lecture Notes in Math., Vol. 341 (1973) · Zbl 0292.18004
[52] Rasekh, N., Cartesian fibrations of complete Segal spaces, High. Struct., 7, 1, 40-73 (2023) · Zbl 1536.18017 · doi:10.21136/HS.2023.03
[53] Rasekh, N.: Quasi-categories vs. Cartesian edition. J. Homotopy Relat. Struct, Segal spaces (2021)
[54] Rasekh, N.: Yoneda lemma for \(\cal{D} \)-simplicial spaces. arXiv preprint (2021). arXiv:2108.06168 · Zbl 1516.18018
[55] Rasekh, N., Cartesian fibrations and representability, Homology Homotopy Appl., 24, 2, 135-161 (2022) · Zbl 1512.18006 · doi:10.4310/HHA.2022.v24.n2.a7
[56] Reedy, C.L.: Homology of algebraic theories. ProQuest LLC, Ann Arbor, MI (1974). Thesis (Ph.D.)-University of California, San Diego
[57] Rezk, C.: Stuff about quasicategories (2017). http://www.math.illinois.edu/rezk/595-fal16/quasicats.pdf
[58] Rezk, C., A model for the homotopy theory of homotopy theory, Trans. Am. Math. Soc., 353, 3, 973-1007 (2001) · Zbl 0961.18008 · doi:10.1090/S0002-9947-00-02653-2
[59] Rezk, C., Every homotopy theory of simplicial algebras admits a proper model, Topology Appl., 119, 1, 65-94 (2002) · Zbl 0994.18008 · doi:10.1016/S0166-8641(01)00057-8
[60] Rezk, C., A Cartesian presentation of weak \(n\)-categories, Geom. Topol., 14, 1, 521-571 (2010) · Zbl 1203.18015 · doi:10.2140/gt.2010.14.521
[61] Rezk, C.; Schwede, S.; Shipley, B., Simplicial structures on model categories and functors, Am. J. Math., 123, 3, 551-575 (2001) · Zbl 0979.55013 · doi:10.1353/ajm.2001.0019
[62] Riehl, E., Verity, D.: Elements of \(\infty \)-Category Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2022) · Zbl 1492.18001
[63] Riehl, E.: Categorical Homotopy Theory. New Mathematical Monographs, vol. 24. Cambridge University Press, Cambridge (2014) · Zbl 1317.18001
[64] Riehl, E.; Shulman, M., A type theory for synthetic \(\infty \)-categories, High. Struct., 1, 1, 147-224 (2017) · Zbl 1437.18016 · doi:10.21136/HS.2017.06
[65] Riehl, E.; Verity, D., Fibrations and Yoneda’s lemma in an \(\infty \)-cosmos, J. Pure Appl. Algebra, 221, 3, 499-564 (2017) · Zbl 1378.18007 · doi:10.1016/j.jpaa.2016.07.003
[66] Stenzel, R., Univalence and completeness of segal objects, J. Pure Appl. Algebra, 227, 4 (2023) · Zbl 1502.18048 · doi:10.1016/j.jpaa.2022.107254
[67] Stevenson, D., Covariant model structures and simplicial localization, North-West. Eur. J. Math., 3, 141-203 (2017) · Zbl 1386.55023
[68] Streicher, T.: Fibred categories à la jean bénabou. arXiv preprint (2018). arXiv:1801.02927v11
[69] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study (2013) · Zbl 1298.03002
[70] Verity, DRB, Weak complicial sets. I. Basic homotopy theory, Adv. Math., 219, 4, 1081-1149 (2008) · Zbl 1158.18007 · doi:10.1016/j.aim.2008.06.003
[71] Weinberger, J.: A synthetic perspective on \((\infty ,1)\)-category theory: fibrational and semantic aspects. arXiv preprint (2022). arXiv:2202.13132 · Zbl 1496.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.