×

Ternary image decomposition with automatic parameter selection via auto- and cross-correlation. (English) Zbl 1515.94015

Summary: This paper is devoted to the decomposition of images into cartoon, texture and noise components. A two-stage variational model is proposed which is parameter-free and both context- and noise-unaware. In the first stage, the additive white noise component is separated and then the denoised image is further split into cartoon and texture, in the second stage. Auto-correlation and cross-correlation principles represent the key aspects of the two variational stages. The solutions of the two optimisation problems are efficiently obtained by the alternating directions method of multipliers (ADMM). Numerical results show the potentiality of the proposed approach for decomposing images corrupted by different kinds of additive white noises.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65K10 Numerical optimization and variational techniques
65F22 Ill-posedness and regularization problems in numerical linear algebra
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] Aujol, JF; Aubert, G.; Blanc-Feraud, L.; Chambolle, A., Image decomposition into a bounded variation component and an oscillating component, J. Math. Imaging Vis., 22, 71-88 (2005) · Zbl 1371.94031 · doi:10.1007/s10851-005-4783-8
[2] Aujol, JF; Chambolle, A., Dual norms and image decomposition models, J. Math. Imaging Vis., 63, 84-104 (2005) · Zbl 1371.94032
[3] Aujol, JF; Gilboa, G.; Chan, T.; Osher, S., Structure-texture image decomposition—modeling, algorithms, and parameter selection, Int. J. Comput. Vision, 67, 111-136 (2006) · Zbl 1287.94011 · doi:10.1007/s11263-006-4331-z
[4] Chan, R.; Lanza, A.; Morigi, S.; Sgallari, F., Convex non-convex image segmentation, Numer. Math., 138, 3, 635-680 (2018) · Zbl 1453.65141 · doi:10.1007/s00211-017-0916-4
[5] Gilles, J., Noisy image decomposition: a new structure, texture and noise model based on local adaptivity, J. Math. Imaging Vis., 28, 285-295 (2007) · Zbl 1523.94009 · doi:10.1007/s10851-007-0020-y
[6] Gilles, J., Noisy multiscale texture separation, Multiscale Model. Simul., 10, 1409-1427 (2012) · Zbl 1286.68474 · doi:10.1137/120881579
[7] Gilles, J.; Meyer, Y., Properties of BV-G structures + textures decomposition models. Application to road detection in satellite images, IEEE Trans. Image Process., 19, 2793-2800 (2010) · Zbl 1371.94141 · doi:10.1109/TIP.2010.2049946
[8] Huska, M.; Lanza, A.; Morigi, S.; Selesnick, I., A convex-nonconvex variational method for the additive decomposition of functions on surfaces, Inverse Probl., 35, 124008 (2019) · Zbl 1468.94016 · doi:10.1088/1361-6420/ab2d44
[9] Huska, M.; Kang, SH; Lanza, A.; Morigi, S., A variational approach to additive image decomposition into structure, harmonic, and oscillatory components, SIAM J. Imaging Sci., 14, 4, 1749-1789 (2021) · Zbl 1478.65065 · doi:10.1137/20M1355987
[10] Lanza, A.; Morigi, S.; Sgallari, F., Variational image restoration with constraints on noise whiteness, J. Math Imaging Vis, 53, 61-77 (2015) · Zbl 1331.94022 · doi:10.1007/s10851-014-0549-5
[11] Lanza, A.; Morigi, S.; Sciacchitano, F.; Sgallari, F., Whiteness constraints in a unified variational framework for image restoration, J. Math. Imaging Vis., 60, 1503-1526 (2018) · Zbl 1433.94014 · doi:10.1007/s10851-018-0845-6
[12] Lanza, A.; Morigi, S.; Sgallari, F., Convex image denoising via non-convex regularization with parameter selection, J. Math. Imaging Vis., 56, 195-220 (2016) · Zbl 1391.94088 · doi:10.1007/s10851-016-0655-7
[13] Lanza, A.; Morigi, S.; Selesnick, IW; Sgallari, F., Sparsity-inducing nonconvex nonseparable regularization for convex image processing, SIAM J. Imaging Sci., 12, 2, 1099-1134 (2019) · Zbl 1524.94023 · doi:10.1137/18M1199149
[14] Lanza, A.; Pragliola, M.; Sgallari, F., Residual whiteness principle for parameter-free image restoration, Electron. Trans. Numer. Anal., 53, 329-351 (2020) · Zbl 1455.94027 · doi:10.1553/etna_vol53s329
[15] Lanza, A.; Morigi, S.; Selesnick, IW; Sgallari, F., Convex non-Convex Variational Models, Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging (2022), Berlin: Springer, Berlin
[16] Malgouyres, F., Minimizing the total variation under a general convex constraint for image restoration, IEEE Trans. Image Process., 11, 12, 1450-1456 (2002) · doi:10.1109/TIP.2002.806241
[17] Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American mathematical society, USA (2001) · Zbl 0987.35003
[18] Osher, SJ; Sole, A.; Vese, LA, Image decomposition and restoration using total variation minimization and the H − 1 norm, SIAM J. Multiscale Model. Simul., 1, 3, 349-370 (2003) · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[19] Le, TM; Vese, L., Image decomposition using total variation and div(bmo) (2004), UCLA: CAM04-76, UCLA
[20] Vese, LA; Osher, SJ, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19, 1-3, 553-572 (2003) · Zbl 1034.49039 · doi:10.1023/A:1025384832106
[21] Rudin, LI; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D., 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[22] Starck, JL; Elad, M.; Donoho, DL, Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans Image Process, 14, 10, 1570-82 (2005) · Zbl 1288.94012 · doi:10.1109/TIP.2005.852206
[23] Tang, L., Wu, L., Fang, Z., Li, C.: A non-convex ternary variational decomposition and its application for image denoising. IET Signal Proc. (2021)
[24] Zhang, CH, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat., 38, 2, 894-942 (2010) · Zbl 1183.62120 · doi:10.1214/09-AOS729
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.