×

Observational constraints on warm inflation in loop quantum cosmology. (English) Zbl 1515.83008


MSC:

83B05 Observational and experimental questions in relativity and gravitational theory

References:

[1] Planck collaboration, 2016 Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, https://doi.org/10.1051/0004-6361/201526926 Astron. Astrophys.594 A11 [1507.02704] · doi:10.1051/0004-6361/201526926
[2] WMAP collaboration, 2013 Nine-Year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results, https://doi.org/10.1088/0067-0049/208/2/20 Astrophys. J. Suppl.208 20 [1212.5225] · doi:10.1088/0067-0049/208/2/20
[3] SDSS collaboration, 2019 The fifteenth data release of the sloan digital sky surveys: first release of MaNGA derived quantities, data visualization tools and stellar library, https://doi.org/10.3847/1538-4365/aaf651 Astrophys. J. Suppl.240 23 [1812.02759] · doi:10.3847/1538-4365/aaf651
[4] SDSS collaboration, 2018 The sloan digital sky survey quasar catalog: fourteenth data release, https://doi.org/10.1051/0004-6361/201732445 Astron. Astrophys.613 A51 [1712.05029] · doi:10.1051/0004-6361/201732445
[5] D.M. Scolnic et al., 2018 The complete light-curve sample of spectroscopically confirmed sne Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample, https://doi.org/10.3847/1538-4357/aab9bb Astrophys. J.859 101 [1710.00845] · doi:10.3847/1538-4357/aab9bb
[6] BOSS collaboration, 2013 The baryon oscillation spectroscopic survey of SDSS-III, https://doi.org/10.1088/0004-6256/145/1/10 Astron. J.145 10 [1208.0022] · doi:10.1088/0004-6256/145/1/10
[7] J.E. Bautista et al., 2018 The SDSS-IV extended Baryon oscillation spectroscopic survey: baryon acoustic oscillations at redshift of 0.72 with the DR14 luminous red galaxy sample, https://doi.org/10.3847/1538-4357/aacea5 Astrophys. J.863 110 [1712.08064] · doi:10.3847/1538-4357/aacea5
[8] S.H. Suyu et al., 2017 H0LiCOW — I. H0 Lenses in COSMOGRAIL’s wellspring: program overview, https://doi.org/10.1093/mnras/stx483 Mon. Not. Roy. Astron. Soc.468 2590 [1607.00017] · doi:10.1093/mnras/stx483
[9] DES collaboration, 2018 Dark energy survey year 1 results: cosmological constraints from galaxy clustering and weak lensing, https://doi.org/10.1103/PhysRevD.98.043526 Phys. Rev. D 98 043526 [1708.01530] · doi:10.1103/PhysRevD.98.043526
[10] Euclid collaboration, 2019 Euclid preparation IV. Impact of undetected galaxies on weak-lensing shear measurements, https://doi.org/10.1051/0004-6361/201935187 Astron. Astrophys.627 A59 [1902.00044] · doi:10.1051/0004-6361/201935187
[11] Planck collaboration, 2016 Planck 2015 results. XXVII. The second planck catalogue of sunyaev-zeldovich sources, https://doi.org/10.1051/0004-6361/201525823 Astron. Astrophys.594 A27 [1502.01598] · doi:10.1051/0004-6361/201525823
[12] F. De Bernardis et al., 2017 Detection of the pairwise kinematic Sunyaev-Zel’dovich effect with BOSS DR11 and the Atacama cosmology telescope J. Cosmol. Astropart. Phys.2017 03 008 [1607.02139]
[13] LIGO Scientific, Virgo collaborations, 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett.116 061102 [1602.03837] · doi:10.1103/PhysRevLett.116.061102
[14] LIGO Scientific, Virgo collaborations, 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral, https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832] · doi:10.1103/PhysRevLett.119.161101
[15] LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL collaborations, 2017 Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, https://doi.org/10.3847/2041-8213/aa920c Astrophys. J.848 L13 [1710.05834] · doi:10.3847/2041-8213/aa920c
[16] R.A. Sunyaev and Ya. B. Zeldovich, 1970 Small scale fluctuations of relic radiation Astrophys. Space Sci.7 3
[17] P.J.E. Peebles and J.T. Yu, 1970 Primeval adiabatic perturbation in an expanding universe, https://doi.org/10.1086/150713 Astrophys. J.162 815 · doi:10.1086/150713
[18] V.F. Mukhanov and G.V. Chibisov, 1981 Quantum fluctuations and a nonsingular universe JETP Lett.33 532
[19] W.H. Press, 1980 Spontaneous production of the zel’dovich spectrum of cosmological fluctuations, https://doi.org/10.1088/0031-8949/21/5/021 Phys. Scripta21 702 · doi:10.1088/0031-8949/21/5/021
[20] Planck collaboration, Planck 2018 results. X. Constraints on inflation, [1807.06211]
[21] D. Lyth and A. Liddle, 2009 The primordial density perturbation: cosmology, inflation and the origin of structure, Cambridge University Press, Cambridge · Zbl 1167.83303 · doi:10.1017/CBO9780511819209
[22] A. Berera, 1995 Warm inflation, https://doi.org/10.1103/PhysRevLett.75.3218 Phys. Rev. Lett.75 3218 [astro-ph/9509049] · doi:10.1103/PhysRevLett.75.3218
[23] A. Berera, I.G. Moss and R.O. Ramos, 2009 Warm inflation and its microphysical basis, https://doi.org/10.1088/0034-4885/72/2/026901 Rept. Prog. Phys.72 026901 [0808.1855] · doi:10.1088/0034-4885/72/2/026901
[24] M. Bastero-Gil and A. Berera, 2009 Warm inflation model building, https://doi.org/10.1142/S0217751X09044206 Int. J. Mod. Phys. A 24 2207 [0902.0521] · Zbl 1170.83478 · doi:10.1142/S0217751X09044206
[25] A.N. Taylor and A. Berera, 2000 Perturbation spectra in the warm inflationary scenario, https://doi.org/10.1103/PhysRevD.62.083517 Phys. Rev. D 62 083517 [astro-ph/0006077] · doi:10.1103/PhysRevD.62.083517
[26] L.M.H. Hall, I.G. Moss and A. Berera, 2004 Scalar perturbation spectra from warm inflation, https://doi.org/10.1103/PhysRevD.69.083525 Phys. Rev. D 69 083525 [astro-ph/0305015] · doi:10.1103/PhysRevD.69.083525
[27] C. Graham and I.G. Moss, 2009 Density fluctuations from warm inflation J. Cosmol. Astropart. Phys.2009 07 013 [0905.3500]
[28] M. Bastero-Gil, A. Berera and R.O. Ramos, 2011 Shear viscous effects on the primordial power spectrum from warm inflation J. Cosmol. Astropart. Phys.2011 07 030 [1106.0701]
[29] M. Bastero-Gil, A. Berera, I.G. Moss and R.O. Ramos, 2014 Cosmological fluctuations of a random field and radiation fluid J. Cosmol. Astropart. Phys.2014 05 004 [1401.1149]
[30] S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R.O. Ramos and J.G. Rosa, 2014 The importance of being warm (during inflation), https://doi.org/10.1016/j.physletb.2014.03.029 Phys. Lett. B 732 116 [1307.5868] · Zbl 1360.83083 · doi:10.1016/j.physletb.2014.03.029
[31] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, 2014 Observational implications of mattergenesis during inflation J. Cosmol. Astropart. Phys.2014 10 053 [1404.4976]
[32] M. Bastero-Gil, A. Berera, I.G. Moss and R.O. Ramos, 2014 Theory of non-Gaussianity in warm inflation J. Cosmol. Astropart. Phys.2014 12 008 [1408.4391]
[33] L. Visinelli, 2015 Cosmological perturbations for an inflaton field coupled to radiation J. Cosmol. Astropart. Phys.2015 01 005 [1410.1187]
[34] R.O. Ramos and L.A. da Silva, 2013 Power spectrum for inflation models with quantum and thermal noises J. Cosmol. Astropart. Phys.2013 03 032 [1302.3544]
[35] M. Benetti and R.O. Ramos, 2017 Warm inflation dissipative effects: predictions and constraints from the Planck data, https://doi.org/10.1103/PhysRevD.95.023517 Phys. Rev. D 95 023517 [1610.08758] · doi:10.1103/PhysRevD.95.023517
[36] N. Bodendorfer, An elementary introduction to loop quantum gravity, [1607.05129] · Zbl 1331.83096
[37] D.-W. Chiou, 2014 Loop quantum gravity, https://doi.org/10.1142/S0218271815300050 Int. J. Mod. Phys. D 24 1530005 [1412.4362] · Zbl 1312.83001 · doi:10.1142/S0218271815300050
[38] A. Ashtekar and P. Singh, 2011 Loop Quantum Cosmology: A Status Report, https://doi.org/10.1088/0264-9381/28/21/213001 Class. Quant. Grav.28 213001 [1108.0893] · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[39] A. Barrau, T. Cailleteau, J. Grain and J. Mielczarek, 2014 Observational issues in loop quantum cosmology, https://doi.org/10.1088/0264-9381/31/5/053001 Class. Quant. Grav.31 053001 [1309.6896] · Zbl 1292.83001 · doi:10.1088/0264-9381/31/5/053001
[40] I. Agullo and P. Singh, 2017 Loop quantum cosmology, in Loop quantum gravity: the first 30 years, A. Ashtekar and J. Pullin eds., pp. 183-240, WSP [1612.01236] · Zbl 1378.83001 · doi:10.1142/9789813220003_0007
[41] A. Ashtekar, T. Pawlowski and P. Singh, 2006 Quantum nature of the big bang, https://doi.org/10.1103/PhysRevLett.96.141301 Phys. Rev. Lett.96 141301 [gr-qc/0602086] · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[42] A. Ashtekar, T. Pawlowski and P. Singh, 2006 Quantum nature of the big bang: improved dynamics, https://doi.org/10.1103/PhysRevD.74.084003 Phys. Rev. D 74 084003 [gr-qc/0607039] · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[43] A. Ashtekar, A. Corichi and P. Singh, 2008 Robustness of key features of loop quantum cosmology, https://doi.org/10.1103/PhysRevD.77.024046 Phys. Rev. D 77 024046 [0710.3565] · doi:10.1103/PhysRevD.77.024046
[44] I. Agullo and N.A. Morris, 2015 Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra, https://doi.org/10.1103/PhysRevD.92.124040 Phys. Rev. D 92 124040 [1509.05693] · doi:10.1103/PhysRevD.92.124040
[45] I. Agullo, A. Ashtekar and W. Nelson, 2013 Extension of the quantum theory of cosmological perturbations to the Planck era, https://doi.org/10.1103/PhysRevD.87.043507 Phys. Rev. D 87 043507 [1211.1354] · doi:10.1103/PhysRevD.87.043507
[46] I. Agullo, A. Ashtekar and W. Nelson, 2012 A quantum gravity extension of the inflationary scenario, https://doi.org/10.1103/PhysRevLett.109.251301 Phys. Rev. Lett.109 251301 [1209.1609] · doi:10.1103/PhysRevLett.109.251301
[47] I. Agullo, A. Ashtekar and W. Nelson, 2013 The pre-inflationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations, https://doi.org/10.1088/0264-9381/30/8/085014 Class. Quant. Grav.30 085014 [1302.0254] · Zbl 1267.83031 · doi:10.1088/0264-9381/30/8/085014
[48] A. Ashtekar, W. Kaminski and J. Lewandowski, 2009 Quantum field theory on a cosmological, quantum space-time, https://doi.org/10.1103/PhysRevD.79.064030 Phys. Rev. D 79 064030 [0901.0933] · doi:10.1103/PhysRevD.79.064030
[49] R. Herrera, 2010 Warm inflationary model in loop quantum cosmology, https://doi.org/10.1103/PhysRevD.81.123511 Phys. Rev. D 81 123511 [1006.1299] · doi:10.1103/PhysRevD.81.123511
[50] K. Xiao and J.-Y. Zhu, 2011 A Phenomenology analysis of the tachyon warm inflation in loop quantum cosmology, https://doi.org/10.1016/j.physletb.2011.04.007 Phys. Lett. B 699 217 [1104.0723] · doi:10.1016/j.physletb.2011.04.007
[51] X.-M. Zhang and J.-Y. Zhu, 2013 Warm inflation in loop quantum cosmology: a model with a general dissipative coefficient, https://doi.org/10.1103/PhysRevD.87.043522 Phys. Rev. D 87 043522 [1302.0168] · doi:10.1103/PhysRevD.87.043522
[52] R. Herrera, M. Olivares and N. Videla, 2014 General dissipative coefficient in warm intermediate inflation in loop quantum cosmology in light of Planck and BICEP2, https://doi.org/10.1142/S0218271814500801 Int. J. Mod. Phys. D 23 1450080 [1404.2803] · Zbl 1319.83031 · doi:10.1142/S0218271814500801
[53] S. Basilakos, V. Kamali and A. Mehrabi, 2017 Measuring the effects of loop quantum cosmology in the CMB data, https://doi.org/10.1142/S0218271817430234 Int. J. Mod. Phys. D 26 1743023 [1705.05585] · doi:10.1142/S0218271817430234
[54] A. Jawad, N. Videla and F. Gulshan, 2017 Dynamics of warm power-law plateau inflation with a generalized inflaton decay rate: predictions and constraints after Planck 2015, https://doi.org/10.1140/epjc/s10052-017-4846-1 Eur. Phys. J. C 77 271 [1704.07005] · doi:10.1140/epjc/s10052-017-4846-1
[55] V. Kamali, S. Basilakos, A. Mehrabi, M. Motaharfar and E. Massaeli, 2018 Tachyon warm inflation with the effects of loop quantum cosmology in the light of Planck 2015, https://doi.org/10.1142/S0218271818500566 Int. J. Mod. Phys. D 27 1850056 [1703.01409] · Zbl 1430.83013 · doi:10.1142/S0218271818500566
[56] L.L. Graef and R.O. Ramos, 2018 Probability of warm inflation in loop quantum cosmology, https://doi.org/10.1103/PhysRevD.98.023531 Phys. Rev. D 98 023531 [1805.05985] · doi:10.1103/PhysRevD.98.023531
[57] S. Bedic and G. Vereshchagin, 2019 Probability of inflation in loop quantum cosmology, https://doi.org/10.1103/PhysRevD.99.043512 Phys. Rev. D 99 043512 [1807.06554] · doi:10.1103/PhysRevD.99.043512
[58] T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng, 2017 Pre-inflationary universe in loop quantum cosmology, https://doi.org/10.1103/PhysRevD.96.083520 Phys. Rev. D 96 083520 [1705.07544] · doi:10.1103/PhysRevD.96.083520
[59] K.A. Meissner, 2004 Black hole entropy in loop quantum gravity, https://doi.org/10.1088/0264-9381/21/22/015 Class. Quant. Grav.21 5245 [gr-qc/0407052] · Zbl 1062.83056 · doi:10.1088/0264-9381/21/22/015
[60] A. Ashtekar and D. Sloan, 2011 Probability of inflation in loop quantum cosmology, https://doi.org/10.1007/s10714-011-1246-y Gen. Rel. Grav.43 3619 [1103.2475] · Zbl 1269.83065 · doi:10.1007/s10714-011-1246-y
[61] L. Parker, 1968 Particle creation in expanding universes, https://doi.org/10.1103/PhysRevLett.21.562 Phys. Rev. Lett.21 562 · doi:10.1103/PhysRevLett.21.562
[62] L. Parker, 1969 Quantized fields and particle creation in expanding universes. 1., https://doi.org/10.1103/PhysRev.183.1057 Phys. Rev.183 1057 · Zbl 0186.58603 · doi:10.1103/PhysRev.183.1057
[63] R. Brandenberger, Q. Liang, R.O. Ramos and S. Zhou, 2018 Fluctuations through a vibrating bounce, https://doi.org/10.1103/PhysRevD.97.043504 Phys. Rev. D 97 043504 [1711.08370] · doi:10.1103/PhysRevD.97.043504
[64] E. Wilson-Ewing, 2017 Testing loop quantum cosmology, http://doi.org/doi:10.1016/j.crhy.2017.02.004 Comptes Rendus Physique18 207
[65] M. Bastero-Gil, A. Berera and R.O. Ramos, 2011 Dissipation coefficients from scalar and fermion quantum field interactions J. Cosmol. Astropart. Phys.2011 09 033 [1008.1929]
[66] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, 2013 General dissipation coefficient in low-temperature warm inflation J. Cosmol. Astropart. Phys.2013 01 016 [1207.0445]
[67] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, 2016 Warm little inflaton, https://doi.org/10.1103/PhysRevLett.117.151301 Phys. Rev. Lett.117 151301 [1604.08838] · doi:10.1103/PhysRevLett.117.151301
[68] Planck collaboration, 2016 Planck 2015 results. XX. Constraints on inflation, https://doi.org/10.1051/0004-6361/201525898 Astron. Astrophys.594 A20 [1502.02114] · doi:10.1051/0004-6361/201525898
[69] M. Bastero-Gil, S. Bhattacharya, K. Dutta and M.R. Gangopadhyay, 2018 Constraining warm inflation with CMB data J. Cosmol. Astropart. Phys.2018 02 054 [1710.10008]
[70] R. Arya, A. Dasgupta, G. Goswami, J. Prasad and R. Rangarajan, 2018 Revisiting CMB constraints on warm inflation J. Cosmol. Astropart. Phys.2018 02 043 [1710.11109]
[71] Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL U.S.A. 2019
[72] A. Lewis, A. Challinor and A. Lasenby, 2000 Efficient computation of CMB anisotropies in closed FRW models, https://doi.org/10.1086/309179 Astrophys. J.538 473 [astro-ph/9911177] · doi:10.1086/309179
[73] A. Lewis and S. Bridle, 2002 Cosmological parameters from CMB and other data: A Monte Carlo approach, https://doi.org/10.1103/PhysRevD.66.103511 Phys. Rev. D 66 103511 [astro-ph/0205436] · doi:10.1103/PhysRevD.66.103511
[74] BICEP2, Planck collaborations, 2015 Joint analysis of BICEP2/Keck Array and Planck Data, https://doi.org/10.1103/PhysRevLett.114.101301 Phys. Rev. Lett.114 101301 [1502.00612] · doi:10.1103/PhysRevLett.114.101301
[75] BICEP2, Keck Array collaborations, 2016 Improved constraints on cosmology and foregrounds from BICEP2 and keck array cosmic microwave background data with inclusion of 95 GHz band, https://doi.org/10.1103/PhysRevLett.116.031302 Phys. Rev. Lett.116 031302 [1510.09217] · doi:10.1103/PhysRevLett.116.031302
[76] M. Motaharfar, V. Kamali and R.O. Ramos, 2019 Warm inflation as a way out of the swampland, https://doi.org/10.1103/PhysRevD.99.063513 Phys. Rev. D 99 063513 [1810.02816] · doi:10.1103/PhysRevD.99.063513
[77] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Towards a reliable effective field theory of inflation, [1907.13410] · Zbl 1476.83181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.