×

Quantum adiabatic theorem with energy gap regularization. (English. Russian original) Zbl 1515.81091

Theor. Math. Phys. 211, No. 1, 545-557 (2022); translation from Teor. Mat. Fiz. 211, No. 1, 121-135 (2022).
Summary: The dynamics of a nonstationary quantum system whose Hamiltonian explicitly depends on time is called adiabatic if a system state that is an eigenstate of the Hamiltonian at the initial instant of time remains close to this eigenstate throughout the evolution. The degree of such closeness depends on the smallness of the parameter that determines the rate of change of the Hamiltonian. It is usually believed that one of the factors playing a decisive role for the stability of the adiabatic dynamics is the structure of the spectrum of the Hamiltonian. As the quantum adiabatic theorem states in its usual formulation, deviations from the adiabatic evolution can be estimated from above by the ratio of the rate of change of the Hamiltonian to the minimum distance between the energy of the state that approximates the adiabatic dynamics and the rest of the spectrum of the Hamiltonian. We analyze this dependence and prove theorems showing that the efficiency of the adiabatic approximation is more influenced by the rate of change of the Hamiltonian eigenvectors than by the dynamics of the spectrum. In a vast majority of physically meaningful cases, it turns out that controlling the dynamics of eigenvectors is sufficient for ensuring the adiabaticity, regardless of the dynamics of the spectrum as such.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
70H11 Adiabatic invariants for problems in Hamiltonian and Lagrangian mechanics
Full Text: DOI

References:

[1] Landau, L. D.; Lifshitz, E. M., Course of Theoretical Physics (1982), Elsevier
[2] Born, M., Das Adiabatenprinzip in der Quantenmechanik, Z. Phys., 40, 167-192 (1926) · JFM 52.0974.01 · doi:10.1007/BF01400360
[3] Born, M.; Fock, V., Beweis des adiabatensatzes, Z. Phys., 51, 165-180 (1928) · JFM 54.0994.03 · doi:10.1007/BF01343193
[4] Kato, T., On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Japan, 5, 435-439 (1950) · doi:10.1143/JPSJ.5.435
[5] Messiah, A., Quantum Mechanics (2014), Mineola, NY: Dover, Mineola, NY · Zbl 0102.42602
[6] Avron, J. E.; Elgart, A., Adiabatic theorem without a gap condition, Commun. Math. Phys., 203, 445-463 (1999) · Zbl 0936.47047 · doi:10.1007/s002200050620
[7] Teufel, S., A Note on the adiabatic theorem without gap condition, Lett. Math. Phys., 58, 261-266 (2001) · Zbl 1047.81020 · doi:10.1023/A:1014556511004
[8] Lychkovskiy, O.; Gamayun, O.; Cheianov, V., Time scale for adiabaticity breakdown in driven many-body systems and orthogonality catastrophe, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.200401
[9] Il’in, N.; Aristova, A.; Lychkovskiy, O., Adiabatic theorem for closed quantum systems initialized at finite temperature, Phys. Rev. A, 104 (2021) · doi:10.1103/PhysRevA.104.L030202
[10] Lychkovskiy, O.; Gamayun, O.; Cheianov, V., Necessary and sufficient condition for quantum adiabaticity in a driven one-dimensional impurity-fluid system, Phys. Rev. B, 98 (2018) · doi:10.1103/PhysRevB.98.024307
[11] Schützhold, R.; Schaller, G., Adiabatic quantum algorithms as quantum phase transitions: First versus second order, Phys. Rev. A, 74 (2006) · doi:10.1103/PhysRevA.74.060304
[12] Latorre, J.; Orús, R., Adiabatic quantum computation and quantum phase transitions, Phys. Rev. A, 69 (2004) · doi:10.1103/PhysRevA.69.062302
[13] Bowman, J. M., Reduced dimensionality theory of quantum reactive scattering, J. Phys. Chem., 95, 4960-4968 (1991) · Zbl 1228.05045 · doi:10.1021/j100166a014
[14] Gaubatz, U.; Rudecki, P.; Schiemann, S.; Bergmann, K., Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results, J. Chem. Phys., 92, 5363-5376 (1990) · doi:10.1063/1.458514
[15] Bergmann, K.; Vitanov, N. V.; Shore, B. W., Perspective: Stimulated Raman adiabatic passage: The status after 25 years, J. Phys. Chem., 142 (2015) · doi:10.1063/1.4916903
[16] Budich, J. C.; Trauzettel, B., From the adiabatic theorem of quantum mechanics to topological states of matter, Phys. Status Solidi RRL, 7, 109-129 (2013) · doi:10.1002/pssr.201206416
[17] Fetter, A. L.; Walecka, J. D., Quantum Theory of Many-Particle Systems (2003), Mineola, NY: Dover, Mineola, NY · Zbl 1191.70001
[18] Thouless, D. J., Quantization of particle transport, Phys. Rev. B, 27, 6083-6087 (1983) · doi:10.1103/PhysRevB.27.6083
[19] Lohse, M.; Schweizer, C.; Zilberberg, O.; Aidelsburger, M.; Bloch, I., A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nature Phys., 12, 350-354 (2016) · doi:10.1038/nphys3584
[20] Farhi, E.; Goldstone, J.; Gutmann, S.; Sipser, M., Quantum computation by adiabatic evolution (0000)
[21] Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D., A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, 472-475 (2001) · Zbl 1226.81046 · doi:10.1126/science.1057726
[22] Lidar, D. A.; Rezakhani, A. T.; Hamma, A., Adiabatic approximation with exponential accuracy for many-body systems and quantum computation, J. Math. Phys., 50 (2009) · Zbl 1283.81035 · doi:10.1063/1.3236685
[23] Fleischhauer, M.; Lukin, M. D., Quantum memory for photons: Dark-state polaritons, Phys. Rev. A, 65 (2002) · doi:10.1103/PhysRevA.65.022314
[24] Kolodrubetz, M.; Sels, D.; Mehta, P.; Polkovnikov, A., Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep., 697, 1-87 (2017) · Zbl 1370.81083 · doi:10.1016/j.physrep.2017.07.001
[25] Kolmogorov, A. N.; Fomin, S. V., Elements of the Theory of Functions and Functional Analysis (1999), Mineola, NY: Dover, Mineola, NY
[26] Wilde, M. M., Quantum Information Theory (2013), New York: Cambridge Univ. Press, New York · Zbl 1296.81001 · doi:10.1017/CBO9781139525343
[27] Markham, D.; Miszczak, J. A.; Puchała, Z.; Życzkowski, K., Quantum state discrimination: A geometric approach, Phys. Rev. A, 77 (2008) · doi:10.1103/PhysRevA.77.042111
[28] Landau, L. D., Zur theorie der energieubertragung. II, Phys. Z. Sowjetunion, 2, 46-51 (1932) · Zbl 0005.27801
[29] Zener, C., Non-adiabatic crossing of energy levels, Proc. R. Soc. London Ser. A, 137, 696-702 (1932) · JFM 58.1356.02 · doi:10.1098/rspa.1932.0165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.