×

Beyond graph neural networks with lifted relational neural networks. (English) Zbl 1515.68279

Summary: We introduce a declarative differentiable programming framework, based on the language of Lifted Relational Neural Networks, where small parameterized logic programs are used to encode deep relational learning scenarios through the underlying symmetries. When presented with relational data, such as various forms of graphs, the logic program interpreter dynamically unfolds differentiable computation graphs to be used for the program parameter optimization by standard means. Following from the declarative, relational logic-based encoding, this results into a unified representation of a wide range of neural models in the form of compact and elegant learning programs, in contrast to the existing procedural approaches operating directly on the computational graph level. We illustrate how this idea can be used for a concise encoding of existing advanced neural architectures, with the main focus on Graph Neural Networks (GNNs). Importantly, using the framework, we also show how the contemporary GNN models can be easily extended towards higher expressiveness in various ways. In the experiments, we demonstrate correctness and computation efficiency through comparison against specialized GNN frameworks, while shedding some light on the learning performance of the existing GNN models.

MSC:

68T07 Artificial neural networks and deep learning
68N17 Logic programming

References:

[1] Aschenbrenner, V. (2013). Deep relational learning with predicate invention. M.Sc. thesis, Czech Technical University in Prague.
[2] Bader, S., & Hitzler, P. (2005). Dimensions of neural-symbolic integration—A structured survey. arXiv preprint.
[3] Bancilhon, F., Maier, D., Sagiv, Y., & Ullman, J. D. (1985). Magic sets and other strange ways to implement logic programs. In Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database systems (pp. 1-15).
[4] Bengio, Y., Lodi, A., & Prouvost, A. (2020). Machine learning for combinatorial optimization: A methodological tour d’horizon. European Journal of Operational Research. · Zbl 1487.90541
[5] Bistarelli, S., Martinelli, F., & Santini, F. (2008). Weighted datalog and levels of trust. In 2008 Third international conference on availability (pp. 1128-1134). IEEE: Reliability and Security.
[6] Botta, M., Giordana, A., & Piola, R. (1997). Combining first order logic with connectionist learning. In Proceedings of the 14th international conference on machine learning.
[7] Bratko, I., Prolog programming for artificial intelligence (2001), New York: Pearson Education, New York · Zbl 0599.68007
[8] Cameron, C., Chen, R., Hartford, J. S., & Leyton-Brown, K. (2020). Predicting propositional satisfiability via end-to-end learning. In AAAI (pp. 3324-3331).
[9] Chen, Z., Li, X., & Bruna, J. (2017). Supervised community detection with line graph neural networks. arXiv preprint arXiv:170508415.
[10] Cohen, W. W. (2016). Tensorlog: A differentiable deductive database. arXiv preprint arXiv:160506523.
[11] De Raedt, L., Dumančić, S., Manhaeve, R., & Marra, G. (2020). From statistical relational to neuro-symbolic artificial intelligence. arXiv preprint arXiv:200308316.
[12] De Raedt, L.; Kimmig, A.; Toivonen, H., Problog: A probabilistic prolog and its application in link discovery, Ijcai, Hyderabad, 7, 2462-2467 (2007)
[13] Diligenti, M.; Gori, M.; Sacca, C., Semantic-based regularization for learning and inference, Artificial Intelligence, 244, 143-165 (2017) · Zbl 1404.68100 · doi:10.1016/j.artint.2015.08.011
[14] Ding, L., Liya, D. (1995). Neural prolog-the concepts, construction and mechanism. In 1995 IEEE international conference on systems, man and cybernetics. intelligent systems for the 21st century (pp. 3603-3608), vol. 4, IEEE.
[15] Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019). Neural logic machines. arXiv preprint arXiv:190411694.
[16] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., & Zhang, W. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 601-610).
[17] Dong, Y., Chawla, N. V., & Swami, A. (2017). metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 135-144).
[18] Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., & Bresson, X. (2020). Benchmarking graph neural networks. arXiv preprint arXiv:200300982.
[19] Eisner, J., & Filardo, N. W. (2010). Dyna: Extending datalog for modern AI. In International Datalog 2.0 Workshop. Springer, (pp 181-220).
[20] Evans, R.; Grefenstette, E., Learning explanatory rules from noisy data, Journal of Artificial Intelligence Research, 61, 1-64 (2018) · Zbl 1426.68235 · doi:10.1613/jair.5714
[21] Evans, R., Saxton, D., Amos, D., Kohli, P., & Grefenstette, E. (2018). Can neural networks understand logical entailment? arXiv preprint arXiv:180208535.
[22] Fadja, A. N., Lamma, E., & Riguzzi, F. (2017). Deep probabilistic logic programming. In: Plp@ Ilp (pp. 3-14).
[23] Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y., Hypergraph neural networks, Proceedings of the AAAI Conference on Artificial Intelligence, 33, 3558-3565 (2019) · doi:10.1609/aaai.v33i01.33013558
[24] Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:190302428.
[25] Fu, T. Y., Lee, W. C., & Lei, Z. (2017). Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In Proceedings of the 2017 ACM on conference on information and knowledge management (pp. 1797-1806).
[26] Gallaire, H., Minker, J., & Nicolas, J. M. (1989). Logic and databases: A deductive approach. Readings in Artificial Intelligence and Databases (pp. 231-247). · Zbl 0548.68098
[27] Garcez, A.; Gori, M.; Lamb, L.; Serafini, L.; Spranger, M.; Tran, S., Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning, Journal of Applied Logics, 6, 4, 611-631 (2019)
[28] Garcez, ASA; Zaverucha, G., The connectionist inductive learning and logic programming system, Applied Intelligence, 11, 1, 59-77 (1999) · doi:10.1023/A:1008328630915
[29] Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. · Zbl 1141.68054
[30] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. In Proceedings of the 34th international conference on machine learning-Volume 70 JMLR. org (pp. 1263-1272).
[31] Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249-256).
[32] Gong, L., & Cheng, Q. (2019). Exploiting edge features for graph neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9211-9219).
[33] Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint arXiv:14105401.
[34] Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I.; Grabska-Barwińska, A.; Colmenarejo, SG; Grefenstette, E.; Ramalho, T.; Agapiou, J., Hybrid computing using a neural network with dynamic external memory, Nature, 538, 7626, 471-476 (2016) · doi:10.1038/nature20101
[35] Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in neural information processing systems (pp. 1024-1034).
[36] Helma, C.; King, RD; Kramer, S.; Srinivasan, A., The predictive toxicology challenge 2000-2001, Bioinformatics, 17, 1, 107-108 (2001) · doi:10.1093/bioinformatics/17.1.107
[37] Hill, P.; Gallagher, J., Meta-programming in logic programming, Handbook of Logic in Artificial Intelligence and Logic Programming, 5, 421-497 (1998) · Zbl 0900.68137
[38] Hohenecker, P.; Lukasiewicz, T., Ontology reasoning with deep neural networks, Journal of Artificial Intelligence Research, 68, 503-540 (2020) · Zbl 1445.68210 · doi:10.1613/jair.1.11661
[39] Huang, Z., & Mamoulis, N. (2017). Heterogeneous information network embedding for meta path based proximity. arXiv preprint arXiv:170105291.
[40] Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., & Li, X. (2016). Meta structure: Computing relevance in large heterogeneous information networks. In Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining (pp. 1595-1604).
[41] Joshi, C. (2020). Transformers are graph neural networks. The Gradient.
[42] Kadlec, R., Bajgar, O., & Kleindienst, J. (2017). Knowledge base completion: Baselines strike back. arXiv preprint arXiv:170510744.
[43] Kazemi, SM; Poole, D., Bridging weighted rules and graph random walks for statistical relational models, Frontiers in Robotics and AI, 5, 8 (2018) · doi:10.3389/frobt.2018.00008
[44] Kersting, K., & De Raedt, L. (2001). Bayesian logic programs. arXiv preprint cs/0111058. · Zbl 1006.68504
[45] Kersting, K., & De Raedt, L. (2001). Towards combining inductive logic programming with bayesian networks. In Inductive logic programming, 11th international conference, ILP 2001, Strasbourg, France, September 9-11, 2001, Proceedings (pp. 118-131). · Zbl 1006.68518
[46] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:160904836.
[47] Kim, J., Kim, T., Kim, S., & Yoo, C. D. (2019). Edge-labeling graph neural network for few-shot learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 11-20).
[48] Kimmig, A.; Mihalkova, L.; Getoor, L., Lifted graphical models: A survey, Machine Learning, 99, 1, 1-45 (2015) · Zbl 1320.62016 · doi:10.1007/s10994-014-5443-2
[49] Kipf, T., Fetaya, E., Wang, K. C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. arXiv preprint arXiv:180204687.
[50] Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In 5th international conference on learning representations, ICLR 2017, Toulon, France, April 24-26, 2017, conference track proceedings, OpenReview.net.
[51] Kok, S., & Domingos, P. (2007). Statistical predicate invention. In Proceedings of the 24th international conference on machine learning (pp. 433-440).
[52] Kuhlmann, M., & Gogolla, M. (2012). From UML and OCL to relational logic and back. In International conference on model driven engineering languages and systems. Springer (pp. 415-431).
[53] Kuželka, O.; Železný, F., A restarted strategy for efficient subsumption testing, Fundamenta Informaticae, 89, 1, 95-109 (2008) · Zbl 1155.68489
[54] Lamb, L. C., d’Avila Garcez, A. S., Gori, M., Prates, M. O. R., Avelar, P .H. C., & Vardi, M. Y. (2020). Graph neural networks meet neural-symbolic computing: A survey and perspective. In Bessiere C (ed) Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020, ijcai.org (pp. 4877-4884).
[55] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86, 11, 2278-2323 (1998) · doi:10.1109/5.726791
[56] Li, J., & Jurafsky, D. (2015). Do multi-sense embeddings improve natural language understanding? arXiv preprint arXiv:150601070.
[57] Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. arXiv preprint arXiv:151105493.
[58] Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:150600019.
[59] Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., & Song, L. (2018). Heterogeneous graph neural networks for malicious account detection. In Proceedings of the 27th ACM international conference on information and knowledge management (pp. 2077-2085).
[60] Lodhi, H., & Muggleton, S. (2005). Is mutagenesis still challenging. ILP-Late-Breaking Papers 35.
[61] Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., & De Raedt, L. (2018). Deepproblog: Neural probabilistic logic programming. In Advances in neural information processing systems (pp. 3749-3759).
[62] Marcus, G. (2020). The next decade in ai: four steps towards robust artificial intelligence. arXiv preprint arXiv:200206177.
[63] Marra, G., Diligenti, M., Giannini, F., Gori, M., & Maggini, M. (2020). Relational neural machines. arXiv preprint arXiv:200202193.
[64] Marra, G., Giannini, F., Diligenti, M., & Gori, M. (2019). Lyrics: A general interface layer to integrate AI and deep learning. arXiv preprint arXiv:190307534.
[65] Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv preprint arXiv:180407612.
[66] Milne, GW; Nicklaus, MC; Driscoll, JS; Wang, S.; Zaharevitz, D., National cancer institute drug information system 3d database, Journal of Chemical Information and Computer Sciences, 34, 5, 1219-1224 (1994) · doi:10.1021/ci00021a032
[67] Minervini, P., Bosnjak, M., Rocktäschel, T., & Riedel, S. (2018). Towards neural theorem proving at scale. arXiv preprint arXiv:180708204.
[68] Morris, C.; Ritzert, M.; Fey, M.; Hamilton, WL; Lenssen, JE; Rattan, G.; Grohe, M., Weisfeiler and Leman go neural: Higher-order graph neural networks, Proceedings of the AAAI Conference on Artificial Intelligence, 33, 4602-4609 (2019) · doi:10.1609/aaai.v33i01.33014602
[69] Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. The Journal of Logic Programming 19. · Zbl 0816.68043
[70] Nagino, G., & Shozakai, M. (2006). Distance measure between gaussian distributions for discriminating speaking styles. In Ninth international conference on spoken language processing.
[71] Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos, A., Ballesteros, M., Chiang, D., Clothiaux, D., & Cohn T, et al. (2017). Dynet: The dynamic neural network toolkit. arXiv preprint arXiv:170103980.
[72] Neumann, M.; Garnett, R.; Bauckhage, C.; Kersting, K., Propagation kernels: Efficient graph kernels from propagated information, Machine Learning, 102, 2, 209-245 (2016) · Zbl 1357.68178 · doi:10.1007/s10994-015-5517-9
[73] Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning convolutional neural networks for graphs. In International conference on machine learning (pp. 2014-2023).
[74] Orsini, F.; Frasconi, P.; De Raedt, L., kproblog: An algebraic prolog for machine learning, Machine Learning, 106, 12, 1933-1969 (2017) · Zbl 1457.68237 · doi:10.1007/s10994-017-5668-y
[75] Palm, R., Paquet, U., & Winther, O. (2018). Recurrent relational networks. In Advances in neural information processing systems (pp. 3368-3378).
[76] Prates, M.; Avelar, PH; Lemos, H.; Lamb, LC; Vardi, MY, Learning to solve np-complete problems: A graph neural network for decision TSP, Proceedings of the AAAI Conference on Artificial Intelligence, 33, 4731-4738 (2019) · doi:10.1609/aaai.v33i01.33014731
[77] Raghothaman, M., Si, X., Heo, K., & Naik, M. (2019). Difflog: Learning datalog programs by continuous optimization. arXiv preprint arXiv:190600163.
[78] Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning. · Zbl 1470.68221
[79] Rocktäschel, T., & Riedel, S. (2017). End-to-end differentiable proving. In Advances in neural information processing systems.
[80] Rocktäschel, T., Singh, S., & Riedel, S. (2015). Injecting logical background knowledge into embeddings for relation extraction. In Proceedings of the 2015 conference of the North american chapter of the association for computational linguistics: Human language technologies.
[81] Sankar, A., Zhang, X., & Chang, K. C. C. (2017). Motif-based convolutional neural network on graphs. arXiv preprint arXiv:171105697.
[82] Scarselli, F.; Gori, M.; Tsoi, AC; Hagenbuchner, M.; Monfardini, G., The graph neural network model, IEEE Transactions on Neural Networks, 20, 1, 61-80 (2008) · doi:10.1109/TNN.2008.2005605
[83] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018). Modeling relational data with graph convolutional networks. In European semantic web conference. Springer (pp. 593-607).
[84] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks61.
[85] Serafini, L., & d’Avila Garcez, A. S. (2016). Logic tensor networks: Deep learning and logical reasoning from data and knowledge. arXiv preprint arXiv:160604422v1.
[86] Shang, J., Qu, M., Liu, J., Kaplan, L. M., Han, J., & Peng, J. (2016). Meta-path guided embedding for similarity search in large-scale heterogeneous information networks. arXiv preprint arXiv:161009769.
[87] Shi, C.; Hu, B.; Zhao, WX; Philip, SY, Heterogeneous information network embedding for recommendation, IEEE Transactions on Knowledge and Data Engineering, 31, 2, 357-370 (2018) · doi:10.1109/TKDE.2018.2833443
[88] Simonovsky, M., & Komodakis, N. (2017). Dynamic edge-conditioned filters in convolutional neural networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3693-3702).
[89] Smolensky, P., Tensor product variable binding and the representation of symbolic structures in connectionist systems, Artificial Intelligence, 46, 1-2, 159-216 (1990) · Zbl 0717.68095 · doi:10.1016/0004-3702(90)90007-M
[90] Smullyan, R. M. (1995). First-order logic. Courier Corporation. · Zbl 0172.28901
[91] Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013a). Reasoning with neural tensor networks for knowledge base completion. In Advances in neural information processing systems.
[92] Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., & Potts C, et al. (2013b). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the conference on empirical methods in natural language processing (EMNLP), Citeseer, vol 1631 (p. 1642).
[93] Šourek, G., Aschenbrenner, V., Železny, F., & Kuželka, O. (2015). Lifted relational neural networks. In Proceedings of the NIPS workshop on cognitive computation: Integrating neural and symbolic approaches co-located with the 29th annual conference on neural information processing systems (NIPS 2015). · Zbl 1444.68163
[94] Šourek, G.; Aschenbrenner, V.; Železný, F.; Schockaert, S.; Kuželka, O., Lifted relational neural networks: Efficient learning of latent relational structures, Journal of Artificial Intelligence Research, 62, 69-100 (2018) · Zbl 1444.68163 · doi:10.1613/jair.1.11203
[95] Šourek, G., Kuzelka, O., & Zeleznỳ, F. (2013). Predicting top-k trends on twitter using graphlets and time features. ILP 2013 Late Breaking Papers p 52.
[96] Šourek, G., Manandhar, S., Železnỳ, F., Schockaert, S., & Kuželka, O. (2016). Learning predictive categories using lifted relational neural networks. In International conference on inductive logic programming, Springer (pp. 108-119). · Zbl 1420.68179
[97] Šourek, G., Svatoš, M., Železnỳ, F., Schockaert, S., & Kuželka, O. (2017). Stacked structure learning for lifted relational neural networks. In International conference on inductive logic programming, Springer (pp. 140-151). · Zbl 1455.68183
[98] Šourek, G., Železný, F., & Kuželka, O. (2021). Lossless compression of structured convolutional models via lifting.
[99] Šourek, t., Železný, F., Kuželka, O. (2020). Learning with molecules beyond graph neural networks. Machine Learning for Molecules worshop at NeurIPS, paper 24. · Zbl 1455.68183
[100] Sun, L., He, L., Huang, Z., Cao, B., Xia, C., Wei, X., & Philip, S. Y. (2018). Joint embedding of meta-path and meta-graph for heterogeneous information networks. In 2018 IEEE international conference on big knowledge (ICBK), IEEE (pp. 131-138).
[101] Sun, Y.; Han, J.; Yan, X.; Yu, PS; Wu, T., Pathsim: Meta path-based top-k similarity search in heterogeneous information networks, Proceedings of the VLDB Endowment, 4, 11, 992-1003 (2011) · doi:10.14778/3402707.3402736
[102] Towell, GG; Shavlik, JW, Knowledge-based artificial neural networks, Artificial intelligence, 70, 1-2, 119-165 (1994) · Zbl 0938.68774 · doi:10.1016/0004-3702(94)90105-8
[103] Towell, G. G., Shavlik, J. W., & Noordewier, M. O. (1990). Refinement of approximate domain theories by knowledge-based neural networks. In Proceedings of the eighth National conference on Artificial intelligence, Boston, MA (pp. 861-866).
[104] Tripos, L., Tripos mol2 file format (2007), St Louis, MO: Tripos, St Louis, MO
[105] Tsamoura, E., & Michael, L. (2020). Neural-symbolic integration: A compositional perspective. arXiv preprint arXiv:201011926.
[106] Tu, K., Li, J., Towsley, D., Braines, D., & Turner, L. D. (2019). gl2vec: Learning feature representation using graphlets for directed networks. In Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 216-221).
[107] Unman, JD, Principles of database and knowledge-based systems (1989), Cambridge: Computer Science Press, Cambridge
[108] Uwents, W.; Monfardini, G.; Blockeel, H.; Gori, M.; Scarselli, F., Neural networks for relational learning: An experimental comparison, Machine Learning, 82, 3, 315-349 (2011) · doi:10.1007/s10994-010-5196-5
[109] Van Emden, MH; Kowalski, RA, The semantics of predicate logic as a programming language, Journal of the ACM (JACM), 23, 4, 733-742 (1976) · Zbl 0339.68004 · doi:10.1145/321978.321991
[110] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. Neural Information Processing Systems.
[111] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:171010903.
[112] Visser, E. (2002). Meta-programming with concrete object syntax. In International conference on generative programming and component engineering, Springer (pp. 299-315). · Zbl 1028.68921
[113] Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li, M., Zhou, J., Huang, Q., & Ma, C., et al. (2019a). Deep graph library: Towards efficient and scalable deep learning on graphs. arXiv preprint arXiv:190901315.
[114] Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019b). Heterogeneous graph attention network. In The world wide web conference (pp. 2022-2032).
[115] Weber, L., Minervini, P., Münchmeyer, J., Leser, U., & Rocktäschel, T. (2019). Nlprolog: Reasoning with weak unification for question answering in natural language. arXiv preprint arXiv:190606187.
[116] Weisfeiler, B.; Lehman, A., A reduction of a graph to a canonical form and an algebra arising during this reduction, Nauchno-Technicheskaya Informatsia, 2, 9, 12-16 (1968)
[117] Wilson, DR; Martinez, TR, The general inefficiency of batch training for gradient descent learning, Neural Networks, 16, 10, 1429-1451 (2003) · doi:10.1016/S0893-6080(03)00138-2
[118] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems.
[119] Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018a). How powerful are graph neural networks? arXiv preprint arXiv:181000826.
[120] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., & Jegelka, S. (2018b). Representation learning on graphs with jumping knowledge networks. arXiv preprint arXiv:180603536.
[121] Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base reasoning. In Advances in neural information processing systems (pp. 2319-2328).
[122] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2018). Graph neural networks: A review of methods and applications. arXiv preprint arXiv:181208434.
[123] Zhu, S., Zhou, C., Pan, S., Zhu, X., & Wang, B. (2019). Relation structure-aware heterogeneous graph neural network. In 2019 IEEE international conference on data mining (ICDM), IEEE (pp. 1534-1539).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.