×

Simple approximative algorithms for free-support Wasserstein barycenters. (English) Zbl 1515.65055

Summary: Computing Wasserstein barycenters of discrete measures has recently attracted considerable attention due to its wide variety of applications in data science. In general, this problem is NP-hard, calling for practical approximative algorithms. In this paper, we analyze a well-known simple framework for approximating Wasserstein-\(p\) barycenters, where we mainly consider the most common case \(p=2\) and \(p= 1\), which is not as well discussed. The framework produces sparse support solutions and shows good numerical results in the free-support setting. Depending on the desired level of accuracy, this requires only \(N-1\) or \(N(N-1)/2\) standard two-marginal optimal transport (OT) computations between the \(N\) input measures, respectively, which is fast, memory-efficient and easy to implement using any OT solver as a black box. What is more, these methods yield a relative error of at most \(N\) and \(2\), respectively, for both \(p= 1,2\). We show that these bounds are practically sharp. In light of the hardness of the problem, it is not surprising that such guarantees cannot be close to optimality in general. Nevertheless, these error bounds usually turn out to be drastically lower for a given particular problem in practice and can be evaluated with almost no computational overhead, in particular without knowledge of the optimal solution. In our numerical experiments, this guaranteed errors of at most a few percent.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U10 Computing methodologies for image processing
90B80 Discrete location and assignment

Software:

POT

References:

[1] Agueh, M.; Carlier, G., Barycenters in the Wasserstein space, SIAM J. Math. Anal., 43, 2, 904-924 (2011) · Zbl 1223.49045 · doi:10.1137/100805741
[2] Puccetti, G.; Rüschendorf, L.; Vanduffel, S., On the computation of Wasserstein barycenters, J. Multivariate Anal., 176 (2020) · Zbl 1490.62022 · doi:10.1016/j.jmva.2019.104581
[3] Turner, K.; Mileyko, Y.; Mukherjee, S.; Harer, J., Fréchet means for distributions of persistence diagrams, Discrete Comput. Geom., 52, 1, 44-70 (2014) · Zbl 1296.68182 · doi:10.1007/s00454-014-9604-7
[4] Trouvé, A.; Younes, L., Local geometry of deformable templates, SIAM J. Math. Anal., 37, 1, 17-59 (2005) · Zbl 1090.58008 · doi:10.1137/S0036141002404838
[5] Zemel, Y.; Panaretos, VM, Fréchet means and Procrustes analysis in Wasserstein space, Bernoulli, 25, 2, 932-976 (2019) · Zbl 1431.62132 · doi:10.3150/17-bej1009
[6] Houdard, A.; Leclaire, A.; Papadakis, N.; Rabin, J., A generative model for texture synthesis based on optimal transport between feature distributions, J. Math. Imaging Vis. (2022) · Zbl 07694845 · doi:10.1007/s10851-022-01108-9
[7] Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: international conference on scale space and variational methods in computer vision, pp 435-446 (2011). Springer
[8] Bonneel, N., van de Panne, M., Paris, S., Heidrich, W.: Displacement interpolation using Lagrangian mass transport. In: Proceedings of the 2011 SIGGRAPH Asia Conference. SA ’11. association for computing machinery, New York, NY, USA (2011). doi:10.1145/2024156.2024192
[9] Solomon, J.; de Goes, F.; Peyré, G.; Cuturi, M.; Butscher, A.; Nguyen, A.; Du, T.; Guibas, L., Convolutional Wasserstein distances: efficient optimal transportation on geometric domains, ACM Trans. Graph., 34, 4, 1-11 (2015) · Zbl 1334.68267 · doi:10.1145/2766963
[10] Elvander, F.; Haasler, I.; Jakobsson, A.; Karlsson, J., Multi-marginal optimal transport using partial information with applications in robust localization and sensor fusion, Signal Process., 171 (2020) · doi:10.1016/j.sigpro.2020.107474
[11] Srivastava, S.; Li, C.; Dunson, DB, Scalable Bayes via barycenter in Wasserstein space, J. Mach. Learn. Res., 19, 8-35 (2018) · Zbl 1444.62037
[12] Panaretos, VM; Zemel, Y., Statistical aspects of Wasserstein distances, Annu. Rev. Stat. Appl., 6, 405-431 (2019) · doi:10.1146/annurev-statistics-030718-104938
[13] Peyré, G.; Cuturi, M., Computational optimal transport: with applications to data science, Found. Trends Mach. Learn., 11, 5-6, 355-607 (2019) · Zbl 1475.68011 · doi:10.1561/2200000073
[14] Altschuler, JM; Boix-Adserà, E., Wasserstein barycenters are NP-hard to compute, SIAM J. Math. Data Sci., 4, 1, 179-203 (2022) · Zbl 1542.68071 · doi:10.1137/21M1390062
[15] Cuturi, M., Doucet, A.: Fast computation of Wasserstein barycenters. In: international conference on machine learning, pp. 685-693 (2014). PMLR
[16] Benamou, J-D; Carlier, G.; Cuturi, M.; Nenna, L.; Peyré, G., Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., 37, 2, 1111-1138 (2015) · Zbl 1319.49073 · doi:10.1137/141000439
[17] Kroshnin, A., Tupitsa, N., Dvinskikh, D., Dvurechensky, P., Gasnikov, A., Uribe, C.: On the complexity of approximating Wasserstein barycenters. In: Chaudhuri, K., Salakhutdinov, R. (eds.) proceedings of the 36th international conference on machine learning. Proceedings of Machine Learning Research, vol. 97, pp. 3530-3540. PMLR, Long Beach, California, USA (2019). https://proceedings.mlr.press/v97/kroshnin19a.html
[18] Ge, D., Wang, H., Xiong, Z., Ye, Y.: Interior-point methods strike back: Solving the Wasserstein barycenter problem. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in neural information processing systems, vol. 32. Curran Associates, Inc., Vancouver Convention Center, Vancouver, CA (2019). https://proceedings.neurips.cc/paper/2019/file/0937fb5864ed06ffb59ae5f9b5ed67a9-Paper.pdf
[19] Yang, L.; Li, J.; Sun, D.; Toh, K-C, A fast globally linearly convergent algorithm for the computation of Wasserstein barycenters, J. Mach. Learn. Res., 22, 21, 1-37 (2021) · Zbl 1539.65069
[20] Lin, T.; Ho, N.; Cuturi, M.; Jordan, MI, On the complexity of approximating multimarginal optimal transport, J. Mach. Learn. Res., 23, 65, 1-43 (2022)
[21] Janati, H., Cuturi, M., Gramfort, A.: Debiased Sinkhorn barycenters. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th international conference on machine learning. Proceedings of machine learning research, vol. 119, pp. 4692-4701. PMLR, virtual (2020). http://proceedings.mlr.press/v119/janati20a.html
[22] Takezawa, Y., Sato, R., Kozareva, Z., Ravi, S., Yamada, M.: Fixed support tree-sliced Wasserstein barycenter. In: Camps-Valls, G., Ruiz, F.J.R., Valera, I. (eds.) Proceedings of the 25th international conference on artificial intelligence and statistics. Proceedings of Machine Learning Research, vol. 151, pp. 1120-1137. PMLR, virtual (2022). https://proceedings.mlr.press/v151/takezawa22a.html
[23] Lin, T., Ho, N., Chen, X., Cuturi, M., Jordan, M.: Fixed-support Wasserstein barycenters: Computational hardness and fast algorithm. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in neural information processing systems, vol. 33, pp. 5368-5380. Curran Associates, Inc., virtual (2020). https://proceedings.neurips.cc/paper/2020/file/3a029f04d76d32e79367c4b3255dda4d-Paper.pdf
[24] Dvinskikh, D., Tiapkin, D.: Improved complexity bounds in Wasserstein barycenter problem. In: International conference on artificial intelligence and statistics, pp. 1738-1746 (2021). PMLR
[25] Gangbo, W.; Świȩch, A., Optimal maps for the multidimensional Monge-Kantorovich problem, Comm. Pure Appl. Math., 51, 1, 23-45 (1998) · Zbl 0889.49030 · doi:10.1002/(SICI)1097-0312(199801)51:1<23::AID-CPA2>3.0.CO;2-H
[26] Benamou, J-D; Carlier, G.; Nenna, L., Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm, Numer. Math., 142, 1, 33-54 (2019) · Zbl 1411.76147 · doi:10.1007/s00211-018-0995-x
[27] Haasler, I.; Ringh, A.; Chen, Y.; Karlsson, J., Multimarginal optimal transport with a tree-structured cost and the Schrödinger bridge problem, SIAM J. Control Optim., 59, 4, 2428-2453 (2021) · Zbl 1467.93329 · doi:10.1137/20M1320195
[28] Beier, F.; von Lindheim, J.; Neumayer, S.; Steidl, G., Unbalanced multi-marginal optimal transport, J. Math. Imaging Vis. (2022) · Zbl 07695353 · doi:10.1007/s10851-022-01126-7
[29] Anderes, E.; Borgwardt, S.; Miller, J., Discrete Wasserstein barycenters: optimal transport for discrete data, Math. Methods Oper. Res., 84, 2, 389-409 (2016) · Zbl 1353.90074 · doi:10.1007/s00186-016-0549-x
[30] Altschuler, JM; Boix-Adsera, E., Wasserstein barycenters can be computed in polynomial time in fixed dimension, J. Mach. Learn. Res., 22, 44, 1-19 (2021) · Zbl 1539.68350
[31] Borgwardt, S.; Patterson, S., Improved linear programs for discrete barycenters, INFORMS J. Optim., 2, 1, 14-33 (2020) · doi:10.1287/ijoo.2019.0020
[32] Borgwardt, S.; Patterson, S., A column generation approach to the discrete barycenter problem, Discrete Optim., 43 (2022) · Zbl 1510.49038 · doi:10.1016/j.disopt.2021.100674
[33] Borgwardt, S., An lp-based, strongly-polynomial 2-approximation algorithm for sparse Wasserstein barycenters, Oper. Res., 22, 2, 1511-1551 (2020)
[34] Qian, Y.; Pan, S., An inexact PAM method for computing Wasserstein barycenter with unknown supports, Comput. Appl. Math., 40, 2, 1-29 (2021) · Zbl 1476.90268 · doi:10.1007/s40314-020-01395-1
[35] Claici, S., Chien, E., Solomon, J.: Stochastic Wasserstein barycenters. In: Dy, J., Krause, A. (eds.) In: Proceedings of the 35th international conference on machine learning. proceedings of machine learning research, vol. 80, pp. 999-1008. PMLR, Stockholmsmässan, Stockholm, SE (2018). https://proceedings.mlr.press/v80/claici18a.html
[36] Luise, G., Salzo, S., Pontil, M., Ciliberto, C.: Sinkhorn barycenters with free support via Frank-Wolfe algorithm. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in neural information processing systems, vol. 32, pp. 9322-9333. Curran Associates, Inc., Vancouver Convention Center, Vancouver, CA (2019). https://proceedings.neurips.cc/paper/2019/file/9f96f36b7aae3b1ff847c26ac94c604e-Paper.pdf
[37] Li, L., Genevay, A., Yurochkin, M., Solomon, J.M.: Continuous regularized Wasserstein barycenters. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 17755-17765. Curran Associates, Inc., virtual (2020). https://proceedings.neurips.cc/paper/2020/file/cdf1035c34ec380218a8cc9a43d438f9-Paper.pdf
[38] von Lindheim, J.: Approximative algorithms for multi-marginal optimal transport and free-support wasserstein barycenters. arXiv preprint arXiv:2202.00954 (2022)
[39] Heinemann, F.; Munk, A.; Zemel, Y., Randomized Wasserstein barycenter computation: resampling with statistical guarantees, SIAM J. Math. Data Sci., 4, 1, 229-259 (2022) · Zbl 1493.62010 · doi:10.1137/20M1385263
[40] Izzo, Z., Silwal, S., Zhou, S.: Dimensionality reduction for Wasserstein barycenter. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021). https://openreview.net/forum?id=cDPFOsj2G6B
[41] Carlier, G.; Ekeland, I., Matching for teams, Econom. Theory, 42, 2, 397-418 (2010) · Zbl 1183.91112 · doi:10.1007/s00199-008-0415-z
[42] Friesecke, G., Penka, M.: The GenCol algorithm for high-dimensional optimal transport: general formulation and application to barycenters and Wasserstein splines. arXiv preprint arXiv:2209.09081 (2022)
[43] Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics ETH Zürich, p. 334. Birkhäuser Verlag, Basel, Basel, CH (2008) · Zbl 1145.35001
[44] Beier, F.; Beinert, R.; Steidl, G., On a linear Gromov-Wasserstein distance, IEEE Trans. Image Process., 31, 7292-7305 (2022) · doi:10.1109/TIP.2022.3221286
[45] Cai, T.; Cheng, J.; Schmitzer, B.; Thorpe, M., The linearized Hellinger-Kantorovich distance, SIAM J. Imaging Sci., 15, 1, 45-83 (2022) · Zbl 1481.49049 · doi:10.1137/21M1400080
[46] Wang, W.; Slepčev, D.; Basu, S.; Ozolek, JA; Rohde, GK, A linear optimal transportation framework for quantifying and visualizing variations in sets of images, Int. J. Comput. Vis., 101, 2, 254-269 (2013) · Zbl 1259.68222 · doi:10.1007/s11263-012-0566-z
[47] Mérigot, Q., Delalande, A., Chazal, F.: Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space. In: Chiappa, S., Calandra, R. (eds.) In: Proceedings of the twenty third international conference on artificial intelligence and statistics. proceedings of machine learning research, vol. 108, pp. 3186-3196. PMLR, virtual (2020). https://proceedings.mlr.press/v108/merigot20a.html
[48] Moosmüller, C.; Cloninger, A., Linear optimal transport embedding: provable Wasserstein classification for certain rigid transformations and perturbations, Inf. Inference (2022) · Zbl 07655458 · doi:10.1093/imaiai/iaac023
[49] Álvarez-Esteban, PC; del Barrio, E.; Cuesta-Albertos, JA; Matrán, C., A fixed-point approach to barycenters in Wasserstein space, J. Math. Anal. Appl., 441, 2, 744-762 (2016) · Zbl 1383.49052 · doi:10.1016/j.jmaa.2016.04.045
[50] Bigot, J.; Klein, T., Characterization of barycenters in the Wasserstein space by averaging optimal transport maps, ESAIM Probab. Stat., 22, 35-57 (2018) · Zbl 1409.62049 · doi:10.1051/ps/2017020
[51] Cazelles, E., Tobar, F., Fontbona, J.: A novel notion of barycenter for probability distributions based on optimal weak mass transport. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 13575-13586. Curran Associates, Inc., virtual (2021). https://proceedings.neurips.cc/paper/2021/file/70d5212dd052b2ef06e5e562f6f9ab9c-Paper.pdf
[52] Beck, A.; Sabach, S., Weiszfeld’s method: old and new results, J. Optim. Theory Appl., 164, 1, 1-40 (2015) · Zbl 1316.49001 · doi:10.1007/s10957-014-0586-7
[53] Bajaj, C., The algebraic degree of geometric optimization problems, Discrete Comput. Geom., 3, 2, 177-191 (1988) · Zbl 0647.90087 · doi:10.1007/BF02187906
[54] Santambrogio, F.: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and their Applications, vol. 87, p. 353. Birkhäuser/Springer, Cham, Cham, CH (2015). doi:10.1007/978-3-319-20828-2. Calculus of variations, PDEs, and modeling · Zbl 1401.49002
[55] Flamary, R.; Courty, N.; Gramfort, A.; Alaya, MZ; Boisbunon, A.; Chambon, S.; Chapel, L.; Corenflos, A.; Fatras, K.; Fournier, N.; Gautheron, L.; Gayraud, NTH; Janati, H.; Rakotomamonjy, A.; Redko, I.; Rolet, A.; Schutz, A.; Seguy, V.; Sutherland, DJ; Tavenard, R.; Tong, A.; Vayer, T., Pot: Python optimal transport, J. Mach. Learn. Res., 22, 78, 1-8 (2021)
[56] Ye, J.; Wu, P.; Wang, JZ; Li, J., Fast discrete distribution clustering using Wasserstein barycenter with sparse support, IEEE Trans. Signal Process., 65, 9, 2317-2332 (2017) · Zbl 1414.94709 · doi:10.1109/TSP.2017.2659647
[57] Lopuhaä, HP; Rousseeuw, PJ, Breakdown points of affine equivariant estimators of multivariate location and covariance matrices, Ann. Statist., 19, 1, 229-248 (1991) · Zbl 0733.62058 · doi:10.1214/aos/1176347978
[58] Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conf. on computer vision and pattern recognition (CVPR) (2014)
[59] Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: new results and new trends in computer science (Graz, 1991). Lecture Notes in Comput. Sci., vol. 555, pp. 359-370. Springer, Graz, AT (1991). doi:10.1007/BFb0038202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.