×

Logarithmic corrections to scaling in the four-dimensional uniform spanning tree. (English) Zbl 1515.60317

Summary: We compute the precise logarithmic corrections to mean-field scaling for various quantities describing the uniform spanning tree of the four-dimensional hypercubic lattice \({\mathbb{Z}}^4\). We are particularly interested in the distribution of the past of the origin, that is, the finite piece of the tree that is separated from infinity by the origin. We prove that the probability that the past contains a path of length \(n\) is of order \((\log n)^{1/3}n^{-1} \), that the probability that the past contains at least \(n\) vertices is of order \((\log n)^{1/6} n^{-1/2} \), and that the probability that the past reaches the boundary of the box \([-n,n]^4\) is of order \((\log n)^{2/3+o(1)}n^{-2} \). An important part of our proof is to prove concentration estimates for the capacity of the four-dimensional loop-erased random walk which may be of independent interest. Our results imply that the Abelian sandpile model also exhibits non-trivial polylogarithmic corrections to mean-field scaling in four dimensions, although it remains open to compute the precise order of these corrections.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G50 Sums of independent random variables; random walks
60D05 Geometric probability and stochastic geometry
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics

References:

[1] Aizenman, M.; Duminil-Copin, H., Marginal triviality of the scaling limits of critical 4D Ising and \(\phi_4^4\) models, Ann. Math. (2), 194, 1, 163-235 (2021) · Zbl 1489.60150
[2] Albeverio, S.; Zhou, XY, Intersections of random walks and Wiener sausages in four dimensions, Acta Appl. Math., 45, 2, 195-237 (1996) · Zbl 0858.60043
[3] Aldous, DJ, The random walk construction of uniform spanning trees and uniform labelled trees, SIAM J. Discrete Math., 3, 4, 450-465 (1990) · Zbl 0717.05028
[4] Alon, N., Nachmias, A., Shalev, M.: The diameter of the uniform spanning tree of dense graphs. arXiv preprint arXiv:2009.09656 (2020) · Zbl 1510.05050
[5] Angel, O.; Croydon, DA; Hernandez-Torres, S.; Shiraishi, D., Scaling limits of the three-dimensional uniform spanning tree and associated random walk, Ann. Probab., 49, 6, 3032-3105 (2021) · Zbl 1486.60019
[6] Angel, O.; Hutchcroft, T.; Járai, A., On the tail of the branching random walk local time, Probab. Theory Related Fields, 180, 1-2, 467-494 (2021) · Zbl 1475.60161
[7] Archer, E., Nachmias, A., Shalev, M.: The GHP scaling limit of uniform spanning trees in high dimensions. arXiv preprint arXiv:2112.01203 (2021)
[8] Asselah, A.; Schapira, B.; Sousi, P., Capacity of the range of random walk on \({\mathbb{Z} }^d\), Trans. Am. Math. Soc., 370, 11, 7627-7645 (2018) · Zbl 1415.60026
[9] Asselah, A.; Schapira, B.; Sousi, P., Capacity of the range of random walk on \({\mathbb{Z} }^4\), Ann. Probab., 47, 3, 1447-1497 (2019) · Zbl 1467.60017
[10] Asselah, A.; Schapira, B.; Sousi, P., Strong law of large numbers for the capacity of the Wiener sausage in dimension four, Probab. Theory Related Fields, 173, 3-4, 813-858 (2019) · Zbl 1411.60036
[11] Athreya, SR; Járai, AA, Infinite volume limit for the stationary distribution of abelian sandpile models, Commun. Math. Phys., 249, 1, 197-213 (2004) · Zbl 1085.82005
[12] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality, Phys. Rev. A (3), 38, 1, 364-374 (1988) · Zbl 1230.37103
[13] Barlow, M. T.: Loop erased walks and uniform spanning trees. In: Discrete Geometric Analysis, vol. 34 of MSJ Mem., pp. 1-32. Math. Soc. Japan, Tokyo (2016) · Zbl 1343.05139
[14] Bauerschmidt, R.; Brydges, DC; Slade, G., Scaling limits and critical behaviour of the 4-dimensional \(n\)-component \(|\phi |^4\) spin model, J. Stat. Phys., 157, 4-5, 692-742 (2014) · Zbl 1308.82026
[15] Bauerschmidt, R.; Brydges, DC; Slade, G., Critical two-point function of the 4-dimensional weakly self-avoiding walk, Commun. Math. Phys., 338, 1, 169-193 (2015) · Zbl 1320.82031
[16] Bauerschmidt, R.; Brydges, DC; Slade, G., Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis, Commun. Math. Phys., 337, 2, 817-877 (2015) · Zbl 1318.60049
[17] Benjamini, I.; Kozma, G., Loop-erased random walk on a torus in dimensions 4 and above, Commun. Math. Phys., 259, 2, 257-286 (2005) · Zbl 1083.60007
[18] Benjamini, I.; Lyons, R.; Peres, Y.; Schramm, O., Uniform spanning forests, Ann. Probab., 29, 1, 1-65 (2001) · Zbl 1016.60009
[19] Benjamini, I.; Pemantle, R.; Peres, Y., Martin capacity for Markov chains, Ann. Probab., 23, 3, 1332-1346 (1995) · Zbl 0840.60068
[20] Bhupatiraju, S., Hanson, J., Járai, A. A.: Inequalities for critical exponents in \(d\)-dimensional sandpiles. Electron. J. Probab., 22:Paper No. 85, 51 (2017) · Zbl 1386.60318
[21] Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013). With a foreword by Michel Ledoux · Zbl 1279.60005
[22] Broder, A.: Generating random spanning trees. In: Foundations of Computer Science, 1989., 30th Annual Symposium on, pp. 442-447. IEEE (1989)
[23] Delmotte, T.: Harnack inequalities on graphs. In: Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997-1998, volume 16 of Sémin. Théor. Spectr. Géom., pp. 217-228. Univ. Grenoble I, Saint-Martin-d’Hères, [1998] · Zbl 0938.60066
[24] Dhar, D., Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64, 14, 1613-1616 (1990) · Zbl 0943.82553
[25] Dhar, D., Theoretical studies of self-organized criticality, Physica A: Stat. Mech. Appl., 369, 1, 29-70 (2006)
[26] Erdös, P.; Taylor, SJ, Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hungar., 11, 231-248 (1960) · Zbl 0096.33302
[27] Fernández, R.; Fröhlich, J.; Sokal, AD, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (2013), Berlin: Springer, Berlin · Zbl 0761.60061
[28] Fitzsimmons, PJ; Salisbury, TS, Capacity and energy for multiparameter Markov processes, Ann. Inst. H. Poincaré Probab. Stat., 25, 3, 325-350 (1989) · Zbl 0689.60071
[29] Halberstam, N., Hutchcroft, T.: Logarithmic corrections to the Alexander-Orbach conjecture for the four-dimensional uniform spanning tree. arXiv preprint arXiv:2211.01307 (2022)
[30] Hutchcroft, T., Wired cycle-breaking dynamics for uniform spanning forests, Ann. Probab., 44, 6, 3879-3892 (2016) · Zbl 1364.05062
[31] Hutchcroft, T., Interlacements and the wired uniform spanning forest, Ann. Probab., 46, 2, 1170-1200 (2018) · Zbl 1391.60021
[32] Hutchcroft, T., Universality of high-dimensional spanning forests and sandpiles, Probab. Theory Related Fields, 176, 1-2, 533-597 (2020) · Zbl 1434.60296
[33] Járai, AA, Sandpile models, Probab. Surv., 15, 243-306 (2018) · Zbl 1409.60144
[34] Járai, AA; Redig, F., Infinite volume limit of the abelian sandpile model in dimensions \(d\ge 3\), Probab. Theory Related Fields, 141, 1-2, 181-212 (2008) · Zbl 1135.60342
[35] Kenyon, R., The asymptotic determinant of the discrete Laplacian, Acta Math., 185, 2, 239-286 (2000) · Zbl 0982.05013
[36] Kozma, G., The scaling limit of loop-erased random walk in three dimensions, Acta Math., 199, 1, 29-152 (2007) · Zbl 1144.60060
[37] Kozma, G.; Nachmias, A., The Alexander-Orbach conjecture holds in high dimensions, Invent. Math., 178, 3, 635-654 (2009) · Zbl 1180.82094
[38] Kozma, G.; Nachmias, A., Arm exponents in high dimensional percolation, J. Am. Math. Soc., 24, 2, 375-409 (2011) · Zbl 1219.60085
[39] Kumagai, T.: Random walks on disordered media and their scaling limits, volume 2101 of Lecture Notes in Mathematics. Springer, Cham, 2014. Lecture notes from the 40th Probability Summer School held in Saint-Flour, (2010), École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School] · Zbl 1360.60003
[40] Lawler, G.; Sun, X.; Wu, W., Four-dimensional loop-erased random walk, Ann. Probab., 47, 6, 3866-3910 (2019) · Zbl 1458.60054
[41] Lawler, GF, A self-avoiding random walk, Duke Math. J., 47, 3, 655-693 (1980) · Zbl 0445.60058
[42] Lawler, GF, The probability of intersection of independent random walks in four dimensions, Commun. Math. Phys., 86, 4, 539-554 (1982) · Zbl 0502.60057
[43] Lawler, GF, Intersections of random walks in four dimensions. II, Commun. Math. Phys., 97, 4, 583-594 (1985) · Zbl 0585.60069
[44] Lawler, GF, Gaussian behavior of loop-erased self-avoiding random walk in four dimensions, Duke Math. J., 53, 1, 249-269 (1986) · Zbl 0664.60068
[45] Lawler, GF, Intersections of Random Walks. Probability and its Applications (1991), Boston: Birkhäuser Boston Inc, Boston · Zbl 1228.60004
[46] Lawler, G. F.: The logarithmic correction for loop-erased walk in four dimensions. In: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), number Special Issue, pp. 347-361 (1995) · Zbl 0889.60075
[47] Lawler, G. F.: Loop-erased random walk. In: Perplexing problems in probability, volume 44 of Progr. Probab., pp. 197-217. Birkhäuser Boston, Boston, MA (1999) · Zbl 0947.60055
[48] Lawler, GF; Limic, V., Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1210.60002
[49] Lawler, GF; Schramm, O.; Werner, W., Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32, 1, 939-995 (2004) · Zbl 1126.82011
[50] Le Gall, J-F; Lin, S., The range of tree-indexed random walk in low dimensions, Ann. Probab., 43, 5, 2701-2728 (2015) · Zbl 1335.60070
[51] Lyons, R.; Morris, BJ; Schramm, O., Ends in uniform spanning forests, Electron. J. Probab., 13, 58, 1702-1725 (2008) · Zbl 1191.60016
[52] Lyons, R.; Pemantle, R.; Peres, Y., Conceptual proofs of \(L\log L\) criteria for mean behavior of branching processes, Ann. Probab., 23, 3, 1125-1138 (1995) · Zbl 0840.60077
[53] Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, New York, (2016). Available at http://pages.iu.edu/ rdlyons/ · Zbl 1376.05002
[54] Lyons, R.; Peres, Y.; Schramm, O., Markov chain intersections and the loop-erased walk, Ann. Inst. H. Poincaré Probab. Stat., 39, 5, 779-791 (2003) · Zbl 1030.60035
[55] Majumdar, SN; Dhar, D., Equivalence between the abelian sandpile model and the \(q \rightarrow 0\) limit of the potts model, Physica A, 185, 129-145 (1992)
[56] Masson, R., The growth exponent for planar loop-erased random walk, Electron. J. Probab., 14, 36, 1012-1073 (2009) · Zbl 1191.60061
[57] Michaeli, P., Nachmias, A., Shalev, M.: The diameter of uniform spanning trees in high dimensions. Probability Theory and Related Fields, pp. 1-34 (2020) · Zbl 1460.05057
[58] Pemantle, R., Choosing a spanning tree for the integer lattice uniformly, Ann. Probab., 19, 4, 1559-1574 (1991) · Zbl 0758.60010
[59] Peres, Y., Revelle, D.: Scaling limits of the uniform spanning tree and loop-erased random walk on finite graphs. unpublished (2004)
[60] Salisbury, T. S.: Energy, and intersections of Markov chains. In: Random Discrete Structures (Minneapolis, MN, 1993), vol. 76 of IMA Vol. Math. Appl., pp. 213-225. Springer, New York (1996) · Zbl 0845.60068
[61] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., 118, 221-288 (2000) · Zbl 0968.60093
[62] Schweinsberg, J., The loop-erased random walk and the uniform spanning tree on the four-dimensional discrete torus, Probab. Theory Related Fields, 144, 3-4, 319-370 (2009) · Zbl 1183.60039
[63] Shiraishi, D., Growth exponent for loop-erased random walk in three dimensions, Ann. Probab., 46, 2, 687-774 (2018) · Zbl 1387.60067
[64] Sznitman, A-S, Vacant set of random interlacements and percolation, Ann. Math. (2), 171, 3, 2039-2087 (2010) · Zbl 1202.60160
[65] Teixeira, A., Interlacement percolation on transient weighted graphs, Electron. J. Probab., 14, 54, 1604-1628 (2009) · Zbl 1192.60108
[66] Vershynin,R.: Weak triangle inequalities for weak \({L}^1\) norm. Unpublished note. Available at https://www.math.uci.edu/ rvershyn/papers/weak-L1.pdf
[67] Wilson, D. B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 296-303. ACM, New York (1996) · Zbl 0946.60070
[68] Zhu, Q.: An upper bound for the probability of visiting a distant point by a critical branching random walk in \({\mathbb{Z}}^4\). Electron. Commun. Probab., 24:Paper No. 32, 6 (2019) · Zbl 1488.60121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.