×

Squirrels can remember little: a random walk with jump reversals induced by a discrete-time renewal process. (English) Zbl 1515.60279

Summary: We consider a class of discrete-time random walks with directed unit steps on the integer line. The direction of the steps is reversed at the time instants of events in a discrete-time renewal process and is maintained at uneventful time instants. This model represents a discrete-time semi-Markovian generalization of the telegraph process. We derive exact formulae for the propagator using generating functions. We prove that for geometrically distributed waiting times in the diffusive limit, this walk converges to the classical telegraph process. We consider the large-time asymptotics of the expected position: For waiting time densities with finite mean the walker remains in the average localized close to the departure site whereas escapes for fat-tailed waiting-time densities (i.e. densities with infinite mean) by a sublinear power-law. We explore anomalous diffusion features by accounting for the ‘aging effect’ as a hallmark of non-Markovianity where the discrete-time version of the ‘aging renewal process’ comes into play. By deriving pertinent distributions of this process we obtain explicit formulae for the variance when the waiting-times are Sibuya-distributed. In this case and generally for fat-tailed waiting time PDFs a \(t^2\)-ballistic superdiffusive scaling emerges in the large time limit. In contrast if the waiting time PDF between the step reversals is light-tailed (‘narrow’ with finite mean and variance) the walk exhibits normal diffusion and for ‘broad’ waiting time PDFs (with finite mean and infinite variance) superdiffusive large time scaling. We also consider time-changed versions where the walk is subordinated to a continuous-time point process such as the time-fractional Poisson process. This defines a new class of biased continuous-time random walks exhibiting several regimes of anomalous diffusion.

MSC:

60K05 Renewal theory
60G22 Fractional processes, including fractional Brownian motion
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60K15 Markov renewal processes, semi-Markov processes

References:

[1] Doob, J. L., Stochastic processes (1953), Wiley: Wiley New York · Zbl 0053.26802
[2] Feller, W., An introduction to probability theory and its applications, Vol. II (1971), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0219.60003
[3] Spitzer, F., Principles of random walk (1976), Springer-Verlag: Springer-Verlag New York · Zbl 0119.34304
[4] Hajek, B., Gambler’s ruin: A random walk on the simplex. Paragraph 6.3, (Cover, T. M.; Gopinath, B., Open problems in communications and computation (1987), Springer-Verlag: Springer-Verlag New York), 204-207
[5] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion : A fractional dynamics approach, Phys Rep, 339, 1-77 (2000) · Zbl 0984.82032
[6] Gorenflo, R.; Mainardi, F., Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: mathematical aspects, (Klages, R.; Radons, G.; Sokolov, I. M., Anomalous transport: Foundations and applications (2008), Wiley-VCH: Wiley-VCH Weinheim, Germany)
[7] Gorenflo R. Mittag-Leffler waiting time, power laws, rarefaction, continuous time random walk, diffusion limit. In: Proceedings of the national workshop on fractional calculus and statistical distributions. Kerala, India; 2009, p. 1-22.
[8] Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E., Fractional calculus and continuous-time finance II: the waiting-time distribution, Physica A, 287, 3-4, 468-481 (2000)
[9] Scalas, E.; Gorenflo, R.; Mainardi, F., Uncoupled continuous-time random walks: solution and limiting behavior of the master equation, Phys Rev E, 69, 1, Article 011107 pp. (2004)
[10] Mainardi, F.; Gorenflo, R.; Scalas, E., A fractional generalization of the Poisson processes, Vietnam J Math, 32 SI, 53-64 (2004) · Zbl 1087.60064
[11] Laskin, N., Fractional Poisson process, Commun Nonlinear Sci Numer Simul, 8, 3-4, 201-213 (2003) · Zbl 1025.35029
[12] Gorenflo, R.; Mainardi, F., On the fractional Poisson process and the discretized stable subordinator, Axioms, 4, 3, 321-344 (2015) · Zbl 1415.60051
[13] Beghin, L.; Orsingher, E., Fractional Poisson processes and related planar random motions, Electron J Prob, 1790-1826 (2009), Paper no. 61 · Zbl 1190.60028
[14] Meerschaert, M. M.; Nane, E.; Villaisamy, P., The fractional Poisson process and the inverse stable subordinator, Electron J Probab, 16, 59, 1600-1620 (2011) · Zbl 1245.60084
[15] Michelitsch, T. M.; Riascos, A. P.; Collet, B. A.; Nowakowski, A. F.; Nicolleau, F. C.G. A., Fractional dynamics on networks and lattices (2019), ISTE/Wiley: ISTE/Wiley London
[16] Cahoy, D. O.; Polito, F., Renewal processes based on generalized Mittag-Leffler waiting times, Commun Nonlinear Sci Numer Simul, 18, 3, 639-650 (2013) · Zbl 1287.60107
[17] Michelitsch, T. M.; Riascos, A. P., Generalized fractional Poisson process and related stochastic dynamics, Fract Calc Appl Anal, 23, 3, 656-693 (2020) · Zbl 1474.60202
[18] Michelitsch, T. M.; Riascos, A. P., Continuous time random walk and diffusion with generalized fractional Poisson process, Physica A, 545, Article 123294 pp. (2020)
[19] Sandev, T.; Metzler, R.; Chechkin, A., From continuous time random walks to the generalized diffusion equation, Fract Calc Appl Anal, 21, 1, 10-28 (2018) · Zbl 1499.35683
[20] Montroll, E. W.; Weiss, G. H., Random walks on lattices II, J Math Phys, 6, 2, 167-181 (1965) · Zbl 1342.60067
[21] Michelitsch, T. M.; Polito, F.; Riascos, A. P., Asymmetric random walks with bias generated by discrete-time counting processes, Commun Nonlinear Sci Numer Simul, 109, Article 106121 pp. (2022), arXiv:2107.02280 · Zbl 1535.60077
[22] Wang, W.; Barkai, E., Fractional advection-diffusion-asymmetry equation, Phys Rev Lett, 125, Article 240606 pp. (2020)
[23] Riascos, A. P.; Mateos, J. L., Random walks on weighted networks: a survey of local and non-local dynamics, J Complex Netw, 9, 5 (2021) · Zbl 1481.90097
[24] Barabási, A.-L., Network science (2016), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1353.94001
[25] Newman, M., Networks (2018), Oxford University Press: Oxford University Press Oxford · Zbl 1391.94006
[26] Schütz, G. M.; Trimper, S., Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk, Phys Rev E, 70, 045101(R) (2004)
[27] Baur, E.; Bertoin, J., Elephant random walks and their connection to Pólya-type urns, Phys Rev E, 94, Article 052134 pp. (2016), arXiv:1608.01305v3
[28] Goldstein, S., On diffusion by discontinuous movements and the telegraph equation, Q J Mech Appl Math, 4, 129-156 (1951) · Zbl 0045.08102
[29] Kac, M., A stochastic model related to the telegrapher’s equation, Rocky Mt J Math, 4, 3, 497-509 (1974) · Zbl 0314.60052
[30] Orsingher, E., Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s laws, Stoch Process Appl, 34, 49-66 (1990) · Zbl 0693.60070
[31] Bogachev, L.; Ratanov, N., Occupation time distributions for the telegraph process, Stochastic Process Appl, 121, 1816-1844 (2011) · Zbl 1234.60075
[32] Beghin, L.; Nieddu, L.; Orsingher, E., Probabilistic analysis of the telegrapher’s process with drift by means of relativistic transformations, J Appl Math Stoch Anal, 14, 1, 11-25 (2001) · Zbl 0986.60096
[33] Stadje, W.; Zacks, S., Telegraph processes with random velocities, J Appl Probab, 41, 665-678 (2004) · Zbl 1080.60072
[34] Di Crescenzo A, A., On random motions with velocities alternating at Erlang-distributed random times, Adv Appl Probab, 33, 2001, 690-701 (2001) · Zbl 0990.60094
[35] Di Crescenzo, A.; Martinucci, B., On the generalized telegraph process with deterministic jumps, Methodol Comput Appl Probab, 15, 215-235 (2013) · Zbl 1280.60049
[36] Masoliver, J., Fractional telegrapher’s equation from fractional persistent random walks, Phys Rev E, 93, Article 052107 pp. (2016)
[37] Compte, A.; Metzler, E., Stochastic foundation of normal and anomalous Cattaneo-type transport, Physica A, 268, 454-468 (1999)
[38] Górska, K.; Horzela, A.; Lenzi, E. K.; Pagnini, G.; Sandev, T., Generalized Cattaneo (telegrapher’s) equations in modeling anomalous diffusion phenomena, Phys Rev E, 102, Article 022128 pp. (2020)
[39] Godrèche, C.; Luck, J. M., Statistics of the occupation time of renewal processes, J Stat Phys, 104, 489 (2001) · Zbl 0985.60094
[40] Barkai, E., Aging in subdiffusion generated by a deterministic dynamical system, Phys Rev Lett, 90, Article 104101 pp. (2003)
[41] Barkai, E.; Cheng, Y.-C., Aging continuous-time random walks, J Chem Phys, 118, 6167 (2003)
[42] Schulz, J. H.P.; Barkai, E.; Metzler, R., Aging renewal theory and application to random walks, Phys Rev X, 4, Article 011028 pp. (2014)
[43] Pachon, A.; Polito, F.; Ricciuti, C., On discrete-time semi-Markov processes, Discrete Contin Dyn Syst Ser B, 26, 3, 1499-1529 (2021) · Zbl 1470.60241
[44] Michelitsch, T. M.; Polito, F.; Riascos, A. P., On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics, Physica A, 565, Article 125541 pp. (2021), arXiv:2005.06925 · Zbl 07464377
[45] Michelitsch, T. M.; Polito, F.; Riascos, A. P., Prabhakar discrete-time generalization of the time-fractional Poisson process and related random walks, (Dzielinski, A.; etal., Proc. int. conf. on fract. diff. appl (ICFDA’21). Proc. int. conf. on fract. diff. appl (ICFDA’21), ICFDA 2021. Proc. int. conf. on fract. diff. appl (ICFDA’21). Proc. int. conf. on fract. diff. appl (ICFDA’21), ICFDA 2021, LNNS, vol. 452 (2022), Springer Nature Switzerland), 1-7, arXiv:2105.12171 [math.PR]
[46] Singh, R. K.; Górska, K.; Sandev, T., General approach to stochastic resetting, Phys Rev E, 105, Article 064133 pp. (2022), arXiv:2203.04046v2
[47] Michelitsch, T. M.; Polito, F.; Riascos, A. P., Biased continuous-time random walks with Mittag-Leffler jumps, Fractal Fract, 4, 51 (2020)
[48] Giusti, A., General fractional calculus and Prabhakar’s theory, Commun Nonlinear Sci Numer Simul, 83, Article 105114 pp. (2020) · Zbl 1451.26009
[49] Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F., A practical guide to Prabhakar fractional calculus, Fract Calc Appl Anal, 23, 1, 9-54 (2020), 2020 · Zbl 1437.33019
[50] Orsingher, E.; Polito, F., Compositions, random sums and continued random fractions of Poisson and fractional Poisson processes, J Stat Phys, 148, 233-249 (2012) · Zbl 1251.60041
[51] Orsingher, E.; Polito, F., The space-fractional Poisson process, Statist Probab Lett, 82, 852-858 (2012) · Zbl 1270.60048
[52] Riascos, A. P.; Boyer, D.; Herringer, P.; Mateos, J. L., Random walks on networks with stochastic resetting, Phys Rev E, 101, Article 062147 pp. (2020)
[53] Prabhakar, T. R., A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math J, 19, 7-15 (1971) · Zbl 0221.45003
[54] Gel’fand, I. M.; Shilov, G. E., Generalized functions, Vols. I, II, III (1968), Academic Press: Academic Press New York · Zbl 0159.18301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.