×

Scaling relations and critical exponents for two dimensional two parameter maps. (English) Zbl 1515.37040

Summary: In this paper we calculate the critical scaling exponents describing the variation of both the positive Lyapunov exponent, \( \lambda^+\), and the mean residence time, \( \langle \tau \rangle \), near the second order phase transition critical point for dynamical systems experiencing crisis-induced intermittency. We study in detail 2-dimensional 2-parameter nonlinear quadratic mappings of the form: \(X_{n+1} = f_1 (X_n, Y_n; A, B)\) and \(Y_{n+1} = f_2 (X_n, Y_n; A, B)\) which contain in their parameter space \((A, B)\) a region where there is crisis-induced intermittent behaviour. Specifically, the Henon, the Mira 1, and Mira 2 maps are investigated in the vicinity of the crises. We show that near a critical point the following scaling relations hold: \(\langle \tau \rangle \sim |A - A_c|^{- \gamma}\), \((\lambda^+ - \lambda_c^+) \sim |A - A_c|^{\beta_A}\) and \((\lambda^+ - \lambda_c^+) \sim |B - B_c|^{\beta_B}\). The subscript \(c\) on a quantity denotes its value at the critical point. All these maps exhibit a chaos to chaos second order phase transition across the critical point. We find these scaling exponents satisfy the scaling relation \(\gamma = \beta_B (\frac{1}{\beta_A} - 1)\), which is analogous to Widom’s scaling law. We find strong agreement between the scaling relationship and numerical results.

MSC:

37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics

References:

[1] Ott, E.; Grebogi, C.; Yorke, J. A., No article title, Phys. Rev. A, 36, 5365 (1987) · doi:10.1103/PhysRevA.36.5365
[2] Yang, H. L.; Huang, Z. Q.; Ding, E. J., No article title, Phys. Rev. E, 55, 6598 (1997) · doi:10.1103/PhysRevE.55.6598
[3] Sommerer, J. C.; Grebogi, C., No article title, Int. J. Bifur. Chaos, 2, 383 (1992) · Zbl 0874.58061 · doi:10.1142/S0218127492000367
[4] Grebogi, C.; Ott, E., No article title, Physica D, 7, 181 (1983) · Zbl 0561.58029 · doi:10.1016/0167-2789(83)90126-4
[5] Clercx, H. J.H.; van Heijst, C. J.F.; Molenaar, D., No article title, Z. Yin. Phys. Rev. E, 75, 036309 (2007) · doi:10.1103/PhysRevE.75.036309
[6] Rempe, E. L.; Borott, F. A.; Hada, T.; Chain, A. C.L.; Santana, W. M.; Kamide, Y., No article title, Nonlinear Processes in Geophysics, 14, 17 (2007) · doi:10.5194/npg-14-17-2007
[7] Sanjuan, M. A.F.; Tanaka, G.; Aihara, K., No article title, Phys. Rev. E, 71, 016219 (2005) · doi:10.1103/PhysRevE.71.016219
[8] A. Barugola, J.C. Cathala, C. Mira, L. Gardini, Chaotic dynamics in two-dimensional noninvertible maps (World Scientific, 1996), vol. 20 of A · Zbl 0906.58027
[9] K. Huang, Statistical Mechanics (Wiley, New York, 1987) · Zbl 1041.82500
[10] Mehra, V.; Ramaswamy, R., No article title, Phys. Rev. E, 53, 3420 (1996) · doi:10.1103/PhysRevE.53.3420
[11] Yorke, J. A.; Grebogi, C.; Ott, E., No article title, Phys. Rev. Lett., 57, 1284 (1986) · doi:10.1103/PhysRevLett.57.1284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.