×

Speed selection and stability of wavefronts for delayed monostable reaction-diffusion equations. (English) Zbl 1515.35092

Summary: We study the asymptotic stability of traveling fronts and the front’s velocity selection problem for the time-delayed monostable equation \((*)\) \(u_t(t,x)=u_{xx}(t,x)-u(t,x)+g(u(t-h,x))\), \(x\in\mathbb R\), \(t>0\), with Lipschitz continuous reaction term \(g:\mathbb R_+\to\mathbb R_+\). We also assume that \(g\) is \(C^{1,\alpha}\)-smooth in some neighbourhood of the equilibria 0 and \(\kappa >0\) to \((*)\). In difference with the previous works, we do not impose any convexity or subtangency condition on the graph of \(g\) so that equation \((*)\) can possess the pushed traveling fronts. Our first main result says that the non-critical wavefronts of \((*)\) with monotone \(g\) are globally nonlinearly stable. In the special and easier case when the Lipschitz constant for \(g\) coincides with \(g'(0)\), we prove a series of results concerning the exponential (asymptotic) stability of non-critical (respectively, critical) fronts for the monostable model \((*)\). As an application, we present a criterion of the absolute global stability of non-critical wavefronts to the diffusive non-monotone Nicholson’s blowflies equation.

MSC:

35C07 Traveling wave solutions
35K57 Reaction-diffusion equations

References:

[1] Aguerrea, M., Gomez, C., Trofimchuk, S.: On uniqueness of semi-wavefronts (Diekmann-Kaper theory of a nonlinear convolution equation re-visited.). Math. Ann. 354, 73-109 (2012) · Zbl 1311.45008 · doi:10.1007/s00208-011-0722-8
[2] Aronson, D.G., Weinberger, H.F.: Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation. Lecture Notes in Mathematics, vol. 446. Springer, Berlin (1977) · Zbl 0325.35050
[3] Bani-Yaghoub, M., Yao, G.-M., Fujiwara, M., Amundsen, D.E.: Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model. Ecol. Complex. 21, 14-26 (2015) · doi:10.1016/j.ecocom.2014.10.007
[4] Benguria, R.D., Depassier, M.C.: Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation. Commun. Math. Phys. 175, 221-227 (1996) · Zbl 0856.35058 · doi:10.1007/BF02101631
[5] Benguria, R.D., Depassier, M.C., Loss, M.: Upper and lower bounds for the speed of pulled fronts with a cut-off. Eur. Phys. J. B 61, 331-334 (2008) · doi:10.1140/epjb/e2008-00069-1
[6] Bonnefon, O., Garnier, J., Hamel, F., Roques, L.: Inside dynamics of delayed traveling waves. Math. Model. Nat. Phenom. 8, 42-59 (2013) · Zbl 1278.35044 · doi:10.1051/mmnp/20138305
[7] Chen, X., Guo, J.S.: Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations. J. Differ. Equ. 184, 549-569 (2002) · Zbl 1010.39004 · doi:10.1006/jdeq.2001.4153
[8] Chern, I.L., Mei, M., Yang, X., Zhang, Q.: Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay. J. Diff. Equ. 259, 1503-1541 (2015). doi:10.1016/j.jde.2015.03.003 · Zbl 1333.35107 · doi:10.1016/j.jde.2015.03.003
[9] Faria, T., Trofimchuk, S.: Positive travelling fronts for reaction-diffusion systems with distributed delay. Nonlinearity 23, 2457-2481 (2010) · Zbl 1206.34086 · doi:10.1088/0951-7715/23/10/006
[10] Fife, P., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335-361 (1977) · Zbl 0361.35035 · doi:10.1007/BF00250432
[11] Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964) · Zbl 0144.34903
[12] Garnier, J., Giletti, T., Hamel, F., Roques, L.: Inside dynamics of pulled and pushed fronts. J. de Mathématiques Pures et Appliquées 98, 428-449 (2012) · Zbl 1255.35073 · doi:10.1016/j.matpur.2012.02.005
[13] Gomez, C., Prado, H., Trofimchuk, S.: Separation dichotomy and wavefronts for a nonlinear convolution equation. J. Math. Anal. Appl. 420, 1-19 (2014) · Zbl 1296.45005 · doi:10.1016/j.jmaa.2014.05.064
[14] Gomez, A., Trofimchuk, S.: Global continuation of monotone wavefronts. J. Lond. Math. Soc. 89, 47-68 (2014) · Zbl 1292.34063 · doi:10.1112/jlms/jdt050
[15] Gurney, W., Blythe, S., Nisbet, R.: Nicholson’s blowflies revisited. Nature 287, 17-21 (1980) · doi:10.1038/287017a0
[16] Hadeler, K.P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2, 251-263 (1975) · Zbl 0343.92009 · doi:10.1007/BF00277154
[17] Ivanov, A., Gomez, C., Trofimchuk, S.: On the existence of non-monotone non-oscillating wavefronts. J. Math. Anal. Appl. 419, 606-616 (2014) · Zbl 1295.35168 · doi:10.1016/j.jmaa.2014.04.075
[18] Jankovic, M., Petrovskii, S.: Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect. Theor. Ecol. 7, 335-349 (2014) · doi:10.1007/s12080-014-0222-z
[19] Jin, Ch., Yin, J., Wang, C.: Large time behavior of solutions for the heat equation with spatio-temporal delay. Nonlinearity 21, 823-840 (2008) · Zbl 1145.35343 · doi:10.1088/0951-7715/21/4/009
[20] Kyrychko, Y., Gourley, S.A., Bartuccelli, M.V.: Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discret. Contin. Dyn. Syst. Ser. B. 5, 1015-1026 (2005) · Zbl 1091.35107 · doi:10.3934/dcdsb.2005.5.1015
[21] Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857-903 (2010) · Zbl 1201.35068 · doi:10.1016/j.jfa.2010.04.018
[22] Lin, C.K., Lin, C.T., Lin, Y., Mei, M.: Exponential stability of nonmonotone traveling waves for Nicholsons blowflies equation. SIAM J. Math. Anal. 46, 1053-1084 (2014) · Zbl 1295.35171 · doi:10.1137/120904391
[23] Lv, G., Wang, M.: Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations. Nonlinearity 23, 845-873 (2010) · Zbl 1197.35044 · doi:10.1088/0951-7715/23/4/005
[24] Ma, S.: Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 171, 294-314 (2001) · Zbl 0988.34053 · doi:10.1006/jdeq.2000.3846
[25] Ma, S., Zou, X.: Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay. J. Diff. Equ. 217, 54-87 (2005) · Zbl 1085.34050 · doi:10.1016/j.jde.2005.05.004
[26] Mallet-Paret, J.: Morse decompositions for delay-differential equations. J. Differ. Equ. 72, 270-315 (1988) · Zbl 0648.34082 · doi:10.1016/0022-0396(88)90157-X
[27] Mallet-Paret, J.: The Fredholm alternative for functional differential equations of mixed type. J. Dyn. Diff. Eqn. 11, 1-48 (1999) · Zbl 0927.34049 · doi:10.1023/A:1021889401235
[28] Mallet-Paret, J., Sell, G.R.: Systems of delay differential equations I: Floquet multipliers and discrete Lyapunov functions. J. Differ. Equ. 125, 385-440 (1996) · Zbl 0849.34055 · doi:10.1006/jdeq.1996.0036
[29] Mallet-Paret, J., Sell, G.R.: The Poincare-Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equ. 125, 441-489 (1996) · Zbl 0849.34056 · doi:10.1006/jdeq.1996.0037
[30] Mei, M., Lin, C.K., Lin, C.T., So, J.W.-H.: Traveling wavefronts for time-delayed reaction-diffusion equation, (I) local nonlinearity. J. Diff. Equ. 247, 495-510 (2009) · Zbl 1173.35071 · doi:10.1016/j.jde.2008.12.026
[31] Mei, M., Lin, C.K., Lin, C.T., So, J.W.-H.: Traveling wavefronts for time-delayed reaction-diffusion equation, (II) nonlocal nonlinearity. J. Diff. Equ. 247, 511-529 (2009) · Zbl 1173.35072 · doi:10.1016/j.jde.2008.12.020
[32] Mei, M., Ou, Ch., Zhao, X.-Q.: Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations. SIAM J. Math. Anal. 42, 2762-2790 (2010) · Zbl 1228.35043 · doi:10.1137/090776342
[33] Mei, M., So, J.W.-H., Li, M.Y., Shen, S.S.P.: Asymptotic stability of traveling waves for the Nicholsons blowflies equation with diffusion. Proc. R. Soc. Edinb. A 134, 579-594 (2004) · Zbl 1059.34019 · doi:10.1017/S0308210500003358
[34] Mei, M., Wang, Y.: Remark on stability of traveling waves for nonlocal Fisher-KPP equations. Int. J. Numer. Anal. Model. Ser. B 2, 379-401 (2011) · Zbl 1337.35075
[35] Ogiwara, T., Matano, H.: Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discret. Contin. Dynam. Syst. 5, 1-34 (1999) · Zbl 0958.37061
[36] Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967) · Zbl 0153.13602
[37] Roques, L., Garnier, J., Hamel, F., Klein, E.K.: Allee effect promotes diversity in traveling waves of colonization. Proc. Natl. Acad. Sci. USA 109, 8828-8833 (2012) · doi:10.1073/pnas.1201695109
[38] Rothe, F.: Convergence to pushed fronts. Rocky Mt. J. Math. 11, 617-633 (1981) · Zbl 0516.35013 · doi:10.1216/RMJ-1981-11-4-617
[39] van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29-222 (2003) · Zbl 1042.74029 · doi:10.1016/j.physrep.2003.08.001
[40] Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312-355 (1976) · Zbl 0344.35051 · doi:10.1016/0001-8708(76)90098-0
[41] Schaaf, K.: Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations. Trans. Am. Math. Soc. 302, 587-615 (1987) · Zbl 0637.35082
[42] Smith, H.L., Zhao, X.-Q.: Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31, 514-534 (2000) · Zbl 0941.35125 · doi:10.1137/S0036141098346785
[43] Smith, H.L.: Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative systems. AMS, Providence (1995) · Zbl 0821.34003
[44] Solar, A., Trofimchuk, S.: Asymptotic convergence to a pushed wavefront in monostable equations with delayed reaction. Nonlinearity 28, 2027-2052 (2015) · Zbl 1388.35104
[45] Stokes, A.N.: On two types of moving front in quasilinear diffusion. Math. Biosci. 31, 307-315 (1976) · Zbl 0333.35048 · doi:10.1016/0025-5564(76)90087-0
[46] Trofimchuk, E., Tkachenko, V., Trofimchuk, S.: Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay. J. Differ. Equ. 245, 2307-2332 (2008) · Zbl 1162.34056 · doi:10.1016/j.jde.2008.06.023
[47] Trofimchuk, E., Pinto, M., Trofimchuk, S.: Pushed traveling fronts in monostable equations with monotone delayed reaction. Discret. Contin. Dyn. Syst. 33, 2169-2187 (2013) · Zbl 1267.34136 · doi:10.3934/dcds.2013.33.2169
[48] Uchiyama, K.: The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18, 453-508 (1978) · Zbl 0408.35053
[49] Wang, Z.C., Li, W.T., Ruan, S.: Travelling fronts in monostable equations with nonlocal delayed effects. J. Dyn. Diff. Eqn. 20, 563-607 (2008) · Zbl 1141.35058
[50] Wu, J., Zou, X.: Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Diff. Eqns. 13, 651-687 (2001). [Erratum in J. Dynam. Diff. Eqns.20, 531-533 (2008)] · Zbl 0996.34053 · doi:10.1023/A:1016690424892
[51] Wu, S.L., Zhao, H.Q., Liu, S.Y.: Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability. Z. Angew. Math. Phys. 62, 377-397 (2011) · Zbl 1259.35060 · doi:10.1007/s00033-010-0112-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.