×

Analysis of fractal dimension of mixed Riemann-Liouville integral. (English) Zbl 1515.28008

Let \(f: [a,b]\times[c,d]\to\mathbb{R}\), where \(0\leq a < b\) and \(0\leq c < d\) be a function. If the integral \[ \mathcal{I}^\gamma f(x,y) := \frac{1}{\Gamma(\gamma_1)\Gamma(\gamma_2)}\,\int_a^x \,\int_c^y (x-u)^{\gamma_1-1}(y-v)^{\gamma_2-1} f(u,v) du dv, \] where \(\gamma :=(\gamma_1, \gamma_2)\) with \(\gamma_1,\gamma_2 >0\), exists, then it is termed the mixed Riemann-Liouville fractional integral of \(f\).
The authors provide estimates for the box and Hausdorff dimension of the graphs of mixed Riemann-Liousville fractional integrals for various choices of functions \(f\). Moreover, given that the function \(f\) has box dimension 2, the box dimension of \(\mathcal{I}^\gamma f\) is estimated.
Unbounded variational functions are constructed on \([0,1]\times [0,1]\) and it is proved that the graphs of their mixed Riemann-Liouville fractional integrals have Hausdorff and box dimension equal to 2 for \(0< \gamma_1, \gamma_2 < 1\).
Some graphs of mixed Riemann-Liouville fractional integrals are also provided.

MSC:

28A80 Fractals
26A33 Fractional derivatives and integrals
28A78 Hausdorff and packing measures
26A30 Singular functions, Cantor functions, functions with other special properties

References:

[1] Adams, CR; Clarkson, JA, Properties of functions f(x,y) of bounded variation, Trans. Amer. Math. Soc., 36, 4, 711-730 (1934) · JFM 60.0201.04
[2] Barnsley, MF, Fractal Everywhere (1988), Orlando: Academic Press, Orlando · Zbl 0691.58001
[3] Barnsley, MF, Fractal functions and interpolation, Construct. Approx., 2, 303-32 (1986) · Zbl 0606.41005 · doi:10.1007/BF01893434
[4] Bouboulis, P.; Dalla, L.; Drakopoulos, V., Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension, J. Approx. Theory, 141, 2, 99-117 (2006) · Zbl 1101.65015 · doi:10.1016/j.jat.2006.01.006
[5] Barański, K.; Bárány, B.; Romanowska, J., On the dimension of the graph of the classical Weierstrass function, Adv. Math., 265, 32-59 (2014) · Zbl 1296.28009 · doi:10.1016/j.aim.2014.07.033
[6] Clarkson, JA; Adams, CR, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc., 35, 4, 824-854 (1933) · Zbl 0008.00602 · doi:10.1090/S0002-9947-1933-1501718-2
[7] Chandra, S.; Abbas, S., The calculus of bivariate fractal interpolation surfaces, Fractals, 29, 3, 2150066 (2021) · Zbl 1486.28006 · doi:10.1142/S0218348X21500663
[8] Falconer, J., Fractal Geometry: Mathematical Foundations and Applications (1999), New York: John Wiley Sons Inc., New York · Zbl 1285.28011
[9] Feng, Z., Variation and Minkowski dimension of fractal interpolation surface, J. Math. Anal. Appl., 345, 1, 322-334 (2008) · Zbl 1151.28011 · doi:10.1016/j.jmaa.2008.03.075
[10] Feng, Z.; Sun, X., Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions, J. Math. Anal. Appl., 412, 1, 416-425 (2014) · Zbl 1310.41001 · doi:10.1016/j.jmaa.2013.10.032
[11] Hunt, BR, The Hausdorff dimension of graphs of Weierstrass functions, Proc. Am. Math. Soc., 126, 3, 791-800 (1998) · Zbl 0897.28004 · doi:10.1090/S0002-9939-98-04387-1
[12] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier B. V., Amsterdam · Zbl 1092.45003
[13] Liang, YS; Su, WY, The relationship between the box dimension of the Besicovitch functions and the orders of their fractional calculus, Appl. Math.Comput., 200, 297-307 (2008) · Zbl 1148.28008
[14] Liang, YS, Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation, Nonlin. Anal., 72, 11, 4304-4306 (2010) · Zbl 1190.28001 · doi:10.1016/j.na.2010.02.007
[15] Liang, YS, The Weyl-Marchaud fractional derivative of a type of self-affine functions, Appl. Math. Comput., 218, 17, 8695-8701 (2012) · Zbl 1250.26008
[16] Liang, YS, Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions, Fract. Calc. Appl. Anal., 21, 6, 1651-1658 (2019) · Zbl 1426.26015 · doi:10.1515/fca-2018-0087
[17] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[18] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5, 4, 367-386 (2002) · Zbl 1042.26003
[19] Ruan, HJ; Su, WY; Yao, K., Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory, 161, 1, 187-197 (2009) · Zbl 1181.41005 · doi:10.1016/j.jat.2008.08.012
[20] Samko, SG; Kilbas, AA; Marichev, OI, Fractional Integrals and Derivatives, Theory and Applications (1993), Yverdon et alibi: Gordon and Breach, Yverdon et alibi · Zbl 0818.26003
[21] Shen, W., Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., 289, 1, 223-266 (2018) · Zbl 1400.28019 · doi:10.1007/s00209-017-1949-1
[22] Tatom, FB, The relationship between fractional calculus and fractals, Fractals, 3, 1, 217-229 (1995) · Zbl 0877.28009 · doi:10.1142/S0218348X95000175
[23] Verma, S.; Viswanathan, P., Bivariate functions of bounded variation: Fractal dimension and fractional integral, Indag. Math., 31, 2, 294-309 (2020) · Zbl 1435.28016 · doi:10.1016/j.indag.2020.01.006
[24] Verma, S.: Some Results on Fractal Functions, Fractal Dimensions and Fractional Calculus. Ph.D. thesis, Indian Institute of Technology Delhi India (2020)
[25] Wu, JR, On a linearity between fractal dimension and order of fractional calculus in Hölder space, Appl. Math. Comput., 125433, 385 (2020) · Zbl 1474.26012
[26] Yao, K.; Su, WY; Zhou, SP, On the connection between the order of the fractional calculus and the dimension of a fractal function, Chaos Solitons and Fractals, 23, 2, 621-629 (2005) · Zbl 1062.28012 · doi:10.1016/j.chaos.2004.05.037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.