×

The length and depth of algebraic groups. (English) Zbl 1515.20138

Summary: Let \(G\) be a connected algebraic group. An unrefinable chain of \(G\) is a chain of subgroups \(G = G_0> G_1> \cdots > G_t = 1\), where each \(G_i\) is a maximal connected subgroup of \(G_{i-1}\). We introduce the notion of the length (respectively, depth) of \(G\), defined as the maximal (respectively, minimal) length of such a chain. Working over an algebraically closed field, we calculate the length of a connected group \(G\) in terms of the dimension of its unipotent radical \(R_u(G)\) and the dimension of a Borel subgroup \(B\) of the reductive quotient \(G/R_u(G)\). In particular, a simple algebraic group of rank \(r\) has length \(\dim B + r\), which gives a natural extension of a theorem of R. Solomon and A. Turull [J. Lond. Math. Soc., II. Ser. 44, No. 3, 437–444 (1991; Zbl 0776.20007)] on finite quasisimple groups of Lie type. We then deduce that the length of any connected algebraic group \(G\) exceeds \(\frac{1}{2} \dim G\). We also study the depth of simple algebraic groups. In characteristic zero, we show that the depth of such a group is at most 6 (this bound is sharp). In the positive characteristic setting, we calculate the exact depth of each exceptional algebraic group and we prove that the depth of a classical group (over a fixed algebraically closed field of positive characteristic) tends to infinity with the rank of the group. Finally we study the chain difference of an algebraic group, which is the difference between its length and its depth. In particular we prove that, for any connected algebraic group \(G\) with soluble radical \(R\)(\(G\)), the dimension of \(G/R(G)\) is bounded above in terms of the chain difference of \(G\).

MSC:

20E15 Chains and lattices of subgroups, subnormal subgroups
20E32 Simple groups
20G15 Linear algebraic groups over arbitrary fields
20E28 Maximal subgroups

Citations:

Zbl 0776.20007

References:

[1] Babai, L.: On the length of subgroup chains in the symmetric group. Comm. Algebra 14, 1729-1736 (1986) · Zbl 0604.20004 · doi:10.1080/00927878608823393
[2] Borel, A., Tits, J.: Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I. Invent. Math. 12, 95-104 (1971) · Zbl 0238.20055 · doi:10.1007/BF01404653
[3] Brewster, B., Ward, M., Zimmermann, I.: Finite groups having chain difference one. J. Algebra 160, 179-191 (1993) · Zbl 0791.20016 · doi:10.1006/jabr.1993.1183
[4] Burness, T.C., Liebeck, M.W., Shalev, A.: The depth of a finite simple group. Proc. Amer. Math. Soc. 146, 2343-2358 (2018) · Zbl 1494.20027 · doi:10.1090/proc/13937
[5] Burness, T.C., Liebeck, M.W., Shalev, A.: On the length and depth of finite groups (with an appendix by D.R. Heath-Brown) (arxiv:1802.02194) (2018), preprint · Zbl 1494.20027
[6] Cameron, P.J., Solomon, R., Turull, A.: Chains of subgroups in symmetric groups. J. Algebra 127, 340-352 (1989) · Zbl 0683.20004 · doi:10.1016/0021-8693(89)90256-1
[7] Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Amer. Math. Soc. Transl. 6, 111-244 (1957) · Zbl 0077.03404
[8] Dynkin, E.B.: Maximal subgroups of the classical groups. Amer. Math. Soc. Transl. 6, 245-378 (1957) · Zbl 0077.03403
[9] Fauntleroy, A.: Defining normal subgroups of unipotent algebraic groups. Proc. Amer. Math. Soc. 50, 14-19 (1975) · Zbl 0329.20027 · doi:10.1090/S0002-9939-1975-0409674-8
[10] Harada, K.: Finite simple groups with short chains of subgroups. J. Math. Soc. Jpn. 20, 655-672 (1968) · Zbl 0169.03401 · doi:10.2969/jmsj/02040655
[11] Hartenstein, M.A., Solomon, R.M.: Finite groups of chain difference one. J. Algebra 229, 601-622 (2000) · Zbl 0967.20008 · doi:10.1006/jabr.1999.8262
[12] Iwasawa, K.: Über die endlichen Gruppen und die Verbände ihrer Untergruppen. J. Fac. Sci. Imp. Univ. Tokyo. Sect. I(4), 171-199 (1941) · Zbl 0061.02503
[13] Janko, Z.: Finite groups with invariant fourth maximal subgroups. Math. Z. 82, 82-89 (1963) · Zbl 0118.26704 · doi:10.1007/BF01112825
[14] Janko, Z.: Finite simple groups with short chains of subgroups. Math. Z. 84, 428-437 (1964) · Zbl 0119.02802 · doi:10.1007/BF01109910
[15] Kohler, J.: A note on solvable groups. J. Lond. Math. Soc. 43, 235-236 (1968) · Zbl 0174.31002 · doi:10.1112/jlms/s1-43.1.235
[16] Liebeck, M.W., Seitz, G.M.: On the subgroup structure of classical groups. Invent. Math. 134, 427-453 (1998) · Zbl 0920.20039 · doi:10.1007/s002220050270
[17] Liebeck, M.W., Seitz, G.M.: The maximal subgroups of positive dimension in exceptional algebraic groups. Mem. Amer. Math. Soc. 169, 802 (2004) · Zbl 1058.20040
[18] McNinch, G.J.: Linearity for actions on vector groups. J. Algebra 397, 666-688 (2014) · Zbl 1316.20052 · doi:10.1016/j.jalgebra.2013.08.030
[19] Petrillo, J.: On the length of finite simple groups having chain difference one. Arch. Math. 88, 297-303 (2007) · Zbl 1126.20016 · doi:10.1007/s00013-006-1983-4
[20] Seitz, G.M.: The maximal subgroups of classical algebraic groups. Mem. Amer. Math. Soc. 67, 365 (1987) · Zbl 0624.20022
[21] Seitz, G.M., Solomon, R., Turull, A.: Chains of subgroups in groups of Lie type, II. J. Lond. Math. Soc. 42, 93-100 (1990) · Zbl 0728.20018 · doi:10.1112/jlms/s2-42.1.93
[22] Shareshian, J., Woodroofe, R.: A new subgroup lattice characterization of finite solvable groups. J. Algebra 351, 448-458 (2012) · Zbl 1252.20019 · doi:10.1016/j.jalgebra.2011.10.032
[23] Solomon, R., Turull, A.: Chains of subgroups in groups of Lie type, I. J. Algebra 132, 174-184 (1990) · Zbl 0714.20011 · doi:10.1016/0021-8693(90)90261-L
[24] Solomon, R., Turull, A.: Chains of subgroups in groups of Lie type, III. J. Lond. Math. Soc. 44, 437-444 (1991) · Zbl 0776.20007 · doi:10.1112/jlms/s2-44.3.437
[25] Thomas, A.R.: The irreducible subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc., to appear · Zbl 1312.20044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.